欢迎来到天天文库
浏览记录
ID:47861611
大小:133.50 KB
页数:5页
时间:2019-12-03
《人教版初一数学下册第九章复习教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第九章复习教案一、教学内容:不等式与不等式组二、教学目标1、知识与技能:能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。 会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。2、方法与过程:能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。3、情感、态度与价值观:会运用数形结合、分类等数学思想方法解决问题,会“逆向”地思考问题,灵活的解答问题.三、教学重点:能熟练的解一元一次不等式与
2、一元一次不等式组四、教学难点:能熟练的解一元一次不等式(组)并体会数形结合、分类讨论等数学思想。五、教学过程(一)知识梳理1.知识结构图概念基本性质不等式的定义不等式的解法一元一次不等式的解法一元一次不等式组的解法不等式实际应用不等式的解集2.知识点回顾(1)、不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”.(2)、不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.
3、不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.(3)、不等式的基本性质 A、不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a>b,则a+c>b+c,a-c>b-cB、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果a>b,并且c>0,那么则a
4、c>bc(或a/c>b/c)C、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a>b,并且c<0,那么则acOa>b;②a-b=Oa=b;③a-bO或ax+b5、(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.(6).一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或6、更多.(7).一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(8).不等式组解集的确定方法,可以归纳为以下四种类型(设a>b)不等式组图示解集ab(同大取大)x>a(同小取小)(大小交叉取中间)无解(大小分离解为空)(9).解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.3.课堂练习(一)解:去分母,得:4(2x-1)≥12(57、/4x-5) 去括号,得:8x-4≥15x-60 移项,得: 8x-15x≥-60+4 合并同类项得:-7x≥-56 系数化为1,得:x≤82.解不等式组: 解:解不等式①得:x≤8解不等式②得:x≥5把不等式①的解集和不等式②的解集在数轴上表示如下:∴原不等式组的解集为:5≤x≤83、求不等式(组)的特殊解: (1)求不等式3x+1≥4x-5的正整数解 解:移项,得:3x-4x≥-5-1 合并同类项,得:-x≥-6 系数化为1,8、得:x≤6所以不等式的正整数解为:1、2、3、4、5、6(2)求不等式组 的整数解解:由不等式①得:x>2由不等式②得:x≤4把不等式①的解集和不等式②的解集在数轴上表示如下:∴不等式组的解集为:2<x≤4∴不等式组的整数解为:3、4.4.不等式(组)在实际生活中的应用当应用题中出现以下的关键词,如大,小,多,少,不小于,不大于,至少,至多等,应属列不等式(组)来解决的问题,而不能列方程(组)来解.(1)我市一山区学校为部分家远的学生安排住宿
5、(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.(6).一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或
6、更多.(7).一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(8).不等式组解集的确定方法,可以归纳为以下四种类型(设a>b)不等式组图示解集ab(同大取大)x>a(同小取小)(大小交叉取中间)无解(大小分离解为空)(9).解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.3.课堂练习(一)解:去分母,得:4(2x-1)≥12(5
7、/4x-5) 去括号,得:8x-4≥15x-60 移项,得: 8x-15x≥-60+4 合并同类项得:-7x≥-56 系数化为1,得:x≤82.解不等式组: 解:解不等式①得:x≤8解不等式②得:x≥5把不等式①的解集和不等式②的解集在数轴上表示如下:∴原不等式组的解集为:5≤x≤83、求不等式(组)的特殊解: (1)求不等式3x+1≥4x-5的正整数解 解:移项,得:3x-4x≥-5-1 合并同类项,得:-x≥-6 系数化为1,
8、得:x≤6所以不等式的正整数解为:1、2、3、4、5、6(2)求不等式组 的整数解解:由不等式①得:x>2由不等式②得:x≤4把不等式①的解集和不等式②的解集在数轴上表示如下:∴不等式组的解集为:2<x≤4∴不等式组的整数解为:3、4.4.不等式(组)在实际生活中的应用当应用题中出现以下的关键词,如大,小,多,少,不小于,不大于,至少,至多等,应属列不等式(组)来解决的问题,而不能列方程(组)来解.(1)我市一山区学校为部分家远的学生安排住宿
此文档下载收益归作者所有