欢迎来到天天文库
浏览记录
ID:47829085
大小:782.00 KB
页数:26页
时间:2019-11-18
《通用版2019版高考数学一轮复习第2章函数概念与基本初等函数9第9讲函数模型及其应用教案理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第9讲 函数模型及其应用1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=axn+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的单调性增
2、函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比一次函数增长更快.( )(2)在(0,+∞)内,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.( )(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.( )(4)不存在x0,使ax03、×(教材习题改编)一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )答案:B生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( )A.36万件 B.18万件C.22万件D.9万件解析:选B.设利润为L(x),则利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.4、某城市客运公司确定客票价格的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100km,超过100km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是________.解析:由题意可得y=答案:y=(教材习题改编)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x为8万元时,奖励1万元.销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=alog4x+b.某业务员要得到8万元奖励,则他的销售额应为________万元.解析:依题意得,即解得5、a=2,b=-2.所以y=2log4x-2,当y=8时,即2log4x-2=8.x=1024(万元).答案:1024 一次函数与二次函数模型(高频考点)高考对函数应用的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.高考对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.[典例引领]角度一 单一考查一次函数或二次函数模型的建立及最值问题某汽车销售公司在A,B两地销售同一种品牌的汽6、车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A.10.5万元 B.11万元C.43万元D.43.025万元【解析】 该公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-)2+0.1×+32.因为x∈[0,16]且x∈N,所以当7、x=10或11时,总利润取得最大值43万元,故选C.【答案】 C角度二 以分段函数的形式考查一次函数和二次函数(2018·山西孝义二轮模考)为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的8、日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?【解】 (1)当x≤6时,y=50x-115,令50x-115>0,解得x≥2.3,因为x为整数,所以3≤x≤6.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x
3、×(教材习题改编)一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )答案:B生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( )A.36万件 B.18万件C.22万件D.9万件解析:选B.设利润为L(x),则利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.
4、某城市客运公司确定客票价格的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100km,超过100km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是________.解析:由题意可得y=答案:y=(教材习题改编)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x为8万元时,奖励1万元.销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=alog4x+b.某业务员要得到8万元奖励,则他的销售额应为________万元.解析:依题意得,即解得
5、a=2,b=-2.所以y=2log4x-2,当y=8时,即2log4x-2=8.x=1024(万元).答案:1024 一次函数与二次函数模型(高频考点)高考对函数应用的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.高考对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.[典例引领]角度一 单一考查一次函数或二次函数模型的建立及最值问题某汽车销售公司在A,B两地销售同一种品牌的汽
6、车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A.10.5万元 B.11万元C.43万元D.43.025万元【解析】 该公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-)2+0.1×+32.因为x∈[0,16]且x∈N,所以当
7、x=10或11时,总利润取得最大值43万元,故选C.【答案】 C角度二 以分段函数的形式考查一次函数和二次函数(2018·山西孝义二轮模考)为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的
8、日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?【解】 (1)当x≤6时,y=50x-115,令50x-115>0,解得x≥2.3,因为x为整数,所以3≤x≤6.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x
此文档下载收益归作者所有