欢迎来到天天文库
浏览记录
ID:47828845
大小:128.00 KB
页数:3页
时间:2019-11-18
《八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1 矩形 第1课时 矩形的性质教案 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.2 特殊的平行四边形18.2.1 矩 形第1课时 矩形的性质1.理解并掌握矩形的性质定理及推论;(重点)2.会用矩形的性质定理及推论进行推导证明;(重点)3.会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明与计算.(难点) 一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么? 可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行
2、四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.二、合作探究探究点一:矩形的性质【类型一】运用矩形的性质求线段或角在矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB长为( )A.1cm B.2cm C.2.5cm D.4cm解析:在矩形ABCD中,O是BC的中点,∠AOD=90°.根据矩形的性质得到△ABO≌△OCD,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB.由矩形ABCD的周长为24cm,得2AB+4AB=24cm,解得AB
3、=4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.【类型二】运用矩形的性质解决有关面积问题如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的( )A.B.C.D.解析:∵在矩形ABCD中,AB∥CD,OB=OD,∴∠ABO=∠CDO.在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴S阴影=S△AOB=S矩形ABCD.故选B.方法总结:
4、运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键.【类型三】运用矩形的性质证明线段相等如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CF⊥BE于F.求证:BF=AE.解析:利用矩形的性质得出AD∥BC,∠A=90°,再利用全等三角形的判定得出△BFC≌△EAB,进而得出答案.证明:在矩形ABCD中,AD∥BC,∠A=90°,∴∠AEB=∠FBC.∵CF⊥BE,∴∠BFC=∠A=90°.由作图可知,BC=BE.在△BFC和
5、△EAB中,∴△BFC≌△EAB(AAS),∴BF=AE.方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明.【类型四】运用矩形的性质证明角相等如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.解析:要证AE平分∠BAD,可转化为△ABE为等腰直角三角形,得AB=BE.又AB=CD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证.证明:∵四边形AB
6、CD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED,∴∠BEF=∠EDC.在△EBF与△DCE中,∴△EBF≌△DCE(ASA).∴BE=CD.∴BE=AB,∴∠BAE=∠BEA=45°,∴∠EAD=45°,∴∠BAE=∠EAD,∴AE平分∠BAD.方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决.探究点二:直角三角形斜边上的中线的性质如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若A
7、B=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DE=AE=AB,DF=AF=AC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解:∵AD是△ABC的高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明:∵DE=AE,DF=AF,∴E、F在线段
8、AD的垂直平分线上,∴EF垂直平分AD.方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.三、板书设计1.矩形的性质矩形的四个角都是直角;矩形的对角线相等.2.直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构
此文档下载收益归作者所有