欢迎来到天天文库
浏览记录
ID:47822756
大小:4.54 MB
页数:21页
时间:2019-11-17
《 福建省福州市2019届高三第一学期质量抽测数学(理科)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018-2019学年度福州市高三第一学期质量抽测数学(理科)试卷(完卷时间:120分钟:满分150分)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则A.B.C.D.【答案】D【解析】【分析】首先解绝对值不等式,求出集合A,之后利用交集的定义求得结果.【详解】由解得,所以,又,所以,故选D.【点睛】该题考查的是有关集合的交集的概念及运算,属于简单题目.2.已知复数满足,则为A.B.C.2D.1【答案】A【解析】【分析】首先利用复数的运算法则,求出复数z,再应用复数的模的运算公式,求得结果.【详解】由,得
2、,所以,故选A.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则和除法运算法则,还有复数的模,属于简单题目.3.曲线在点处的切线与坐标轴围成的三角形的面积为A.2B.C.D.【答案】D【解析】【分析】根据求导公式求出函数的导函数,把代入求出切线的斜率,代入点斜式方程并化简,分别令和,求出切线与坐标轴的交点坐标,再代入面积公式求解.【详解】由题意得,所以,则在点处的切线斜率为,所以切线方程为:,即,令,得,令,得,所以切线与坐标轴围成三角形的面积,故选D.【点睛】该题考查的是有关直线与坐标轴围成三角形面积问题,涉及到的知识点有导数的几何意义,曲线的切线方程,直线方
3、程的点斜式,三角形的面积公式,熟练掌握基础知识是正确解题的关键.4.已知等差数列的前项和为,且,,则A.20B.40C.60D.80【答案】B【解析】【分析】首先利用等差数列的性质,以及题中所给的条件,求得,之后应用等差数列的求和公式求得结果.【详解】等差数列中,前n项和为,且,因为由等差数列的性质可知,所以,故选B.【点睛】该题考查的是有关等差数列的求和问题,涉及到的知识点有等差数列性质,等差数列的求和公式,属于基础题目.5.给出下列说法:①“”是“”的充分不必要条件;②定义在上的偶函数的最大值为30;③命题“,”的否定形式是“,”.其中正确说法的个数为A.0B.1C.2D.3【答
4、案】C【解析】【分析】对于①,利用充分不必要条件的定义判读其正确性,对于②,利用偶函数的定义求得参数的值,结合二次函数的性质,求得其最大值,得出其正确性,对于③,应用特称命题的否定形式,判断其是否正确,即可得结果.【详解】对于①,当时,一定有,但是当时,,所以“”是“”的充分不必要条件,所以①正确;对于②,因为为偶函数,所以,因为定义域为,所以,所以函数的最大值为,所以②正确;对于③,命题“,”的否定形式是“,”,所以③是错误的;故正确命题的个数为2,故选C.【点睛】该题考查的是有关判断正确命题个数的问题,涉及到的知识点有充分必要条件的判断,偶函数的性质,含有一个量词的命题的否定,考
5、查的都是基础.6.已知双曲线的两条渐近线均与圆相切,则双曲线的离心率为A.B.C.D.【答案】A【解析】【分析】先将圆的方程化为标准方程,再根据双曲线的两条渐近线均和圆相切,利用圆心到直线的距离等于半径,可建立几何量之间的关系,从而可求双曲线离心率.【详解】双曲线的渐近线方程为,即,将圆化为标准方程得,所以其圆心为,半径为2,根据题意,可得圆心到直线的距离等于半径,即,整理得,因为,所以有,所以,故选A.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有双曲线的渐近线方程,直线与圆相切的条件,双曲线中之间的关系,双曲线的离心率,属于中档题目.7.秦九韶是我国南宋时期的数学
6、家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分别为3、3,则输出的值为A.143B.48C.16D.5【答案】B【解析】【分析】由题意,模拟程序的运行,依次写出每次循环得到的的值,当时,不满足条件,跳出循环,输出的值为48.【详解】初始值,程序运行过程如下表所示:,,,,,不满足条件,跳出循环,输出的值为48,故选B【点睛】该题考查的是有关程序框图的输出结果的问题,在解题的过程中,注意在什么情况下跳出循环,属于简单题目.8.某个几何体的三视图如图所示
7、,在该几何体的各个侧面中,面积最大的侧面的面积为A.B.1C.D.【答案】D【解析】【分析】首先根据题中所给的几何体的三视图,还原几何体,得出其为底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,利用面积公式求得各个侧面的面积,比较大小得出结果.【详解】分析其三视图,可以确定该几何体是底面是直角梯形,且一条侧棱和底面垂直的四棱锥,并且根据题中所给的数据可以断定四个侧面分别是直角三角形,从而可以求得该四棱锥
此文档下载收益归作者所有