2019年高考数学真题分类汇编 14 推理与证明 理

2019年高考数学真题分类汇编 14 推理与证明 理

ID:47811327

大小:35.00 KB

页数:6页

时间:2019-11-16

2019年高考数学真题分类汇编 14 推理与证明 理 _第1页
2019年高考数学真题分类汇编 14 推理与证明 理 _第2页
2019年高考数学真题分类汇编 14 推理与证明 理 _第3页
2019年高考数学真题分类汇编 14 推理与证明 理 _第4页
2019年高考数学真题分类汇编 14 推理与证明 理 _第5页
资源描述:

《2019年高考数学真题分类汇编 14 推理与证明 理 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高考数学真题分类汇编14推理与证明理考点一 合情推理与演绎推理1.(xx北京,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有(  )A.2人B.3人C.4人D.5人答案 B2.(xx课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,

2、甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为    . 答案 A3.(xx陕西,14,5分)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是        . 答案 F+V-E=24.(xx北京,20,13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1

3、+a2+…+ak}(2≤k≤n),其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P':(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4

4、,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)解析 (1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P')=max{c+d+b,c+a+b}.当m=a时,T2(P')=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P').当m=d时,T2(P')=max{c+d+b,c+

5、a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P').所以无论m=a还是m=d,T2(P)≤T2(P')都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.考点二 直接证明与间接证明5.(xx山东,4,5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是(  )A.方

6、程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A考点三 数学归纳法6.(xx安徽,21,13分)设实数c>0,整数p>1,n∈N*.(1)证明:当x>-1且x≠0时,(1+x)p>1+px;(2)数列{an}满足a1>,an+1=an+.证明:an>an+1>.解析 (1)证明:用数学归纳法证明:①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.②假设p=k(k≥2,k∈N*)时,不等式

7、(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以p=k+1时,原不等式也成立.综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.(2)证法一:先用数学归纳法证明an>.①当n=1时,由题设a1>知an>成立.②假设n=k(k≥1,k∈N*)时,不等式ak>成立.由an+1=an+易知an>0,n∈N*.当n=k+1时,=+=1+.由ak>>0得-1<-<<0.由(

8、1)中的结论得=>1+p·=.因此>c,即ak+1>.所以n=k+1时,不等式an>也成立.综合①②可得,对一切正整数n,不等式an>均成立.再由=1+可得<1,即an+1an+1>,n∈N*.证法二:设f(x)=x+x1-p,x≥,则xp≥c,并且f'(x)=+(1-p)x-p=>0,x>.由此可得,f(x)在[,+∞)上单调递增.因而,当x>时,f(x)>f

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。