欢迎来到天天文库
浏览记录
ID:47782230
大小:54.30 KB
页数:4页
时间:2019-11-13
《2019人教A版数学必修五 (2.2.1 《等差数列的概念》、等差数列的通项公式)示范教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019人教A版数学必修五(2.2.1《等差数列的概念》、等差数列的通项公式)示范教案本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察——分析概括——师生互动,形成概念——启发引导,演绎结论——拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥
2、他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题.教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用;(2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式.教具准备多媒体课件,投影仪三维目标一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定
3、条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.二、过程与方法1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识.教学过程导入新课师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子
4、:(课本P41页的4个例子)(1)0,5,10,15,20,25,…;(2)48,53,58,63,…;(3)18,15.5,13,10.5,8,5.5…;(4)10072,10144,10216,10288,10366,….请你们来写出上述四个数列的第7项.生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10510.师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.师说得很有道理!我再请同学们仔细观
5、察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生1每相邻两项的差相等,都等于同一个常数.师作差是否有顺序,谁与谁相减?生1作差的顺序是后项减前项,不能颠倒.师以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对
6、于数列{an},若an-an-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.师定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)生从“第二项起”和“同一个常数”.师很好!师请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?生数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.
7、5,….师好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?生a2-a1=d,即a2=a1+d.师对,继续说下去!生a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d
此文档下载收益归作者所有