2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2

2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2

ID:47781779

大小:334.30 KB

页数:6页

时间:2019-11-13

2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2_第1页
2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2_第2页
2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2_第3页
2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2_第4页
2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2_第5页
资源描述:

《2019-2020年高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学2.3.1直线与平面垂直的判定全册精品教案新人教A版必修2(一)教学目标1.知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.(二)教学重点、难点重点:(1)直线与平面垂直的定义和判定定理;(2)直线和平面所成的角.难点:直线与平面垂直判定定理

2、的探究.教学过程教学内容师生互动设计意图新课导入问题:直线和平面平行的判定方法有几种?师投影问题,学生回答.生:可用定义可判断,也可依判定定理判断.复习巩固探索新知一、直线和平面垂直的定义、画法如果直线l与平面内的任意一条直线都垂直,我们说直线l与平面互相垂直,记作l⊥.直线l叫做平面的垂线,平面叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.画直线与平面垂直时,通常把直线画成与表不平面的平行四边形的一边垂直,如图.师:日常生活中我们对直线与平面垂直有很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置

3、关系如何?生:旗杆与地面内任意一条经B的直线垂直.师:那么旗杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?(图)培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.生:垂直,依据是异面直线垂直的定义.师:你能尝试给线面垂直下定义吗?……师:能否将任意直线改为无数条直线?学生找一反例说明.探索新知二、直线和平面垂直的判定1.试验如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面垂直?2.直线与平面垂直的判定定理:一条直线与一个平面内两条相

4、交直线都垂直,则该直线与此平面垂直.思考:能否将直线与平面垂直的判定定理中的“两条相交直线”改为一条直线或两条平行直线?师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).学生动手实验,然后回答问题.生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD……师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.培养学生的几何直观能力使他们在直观感知,

5、操作确认的基础上学会归纳概括结论.典例剖析例1如图,已知a∥b,a⊥,求证:b⊥.证明:在平面内作两条相交直线m、n.因为直线a⊥,根据直线与平面垂直的定义知a⊥m,a⊥n.师:要证b⊥,需证b与内任意一条直线的垂直,又a∥b,问题转化为a与面内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明过程.……巩固所知识培养学生转化化归能力、书写表达能力.又因为b∥a,所以b⊥m,b⊥n.又因为,m、n是两条相交直线,b⊥.师:此结论可以直接利用,判定直线和平面垂直.探索新知二、直线和平面所成的角如图,一条直线PA和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点

6、A叫做斜足.过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提高上课效率.典例剖析例2如图,在正方体ABCD–A1B1C1D1中,求A1B和平面A1B1CD所成的角.分析:找出直线A1B在平面A1B1CD内的射影,就可以求出A1B和平面A1B1CD所成的角.解:连结BC1交B1C于点O

7、,连结A1O.设正方体的棱长为a,因为A1B1⊥B1C1,A1B1⊥B1B,所以师:此题A1是斜足,要求直线A1B与平面A1B1CD所成的角,关键在于过B点作出(找到,面A1B1CD的垂线,作出(找到)了面A1B1CD的垂线,直线A1B在平面A1B1CD内的射影就知道了,怎样过B作平面A1B1CD的垂线呢?生:连结BC1即可.师:能证明吗?学生分析,教师板书,共同完成求解过程.点拔关键点,突破难点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。