欢迎来到天天文库
浏览记录
ID:47751087
大小:947.50 KB
页数:28页
时间:2019-11-10
《2019-2020年中考数学考点总动员系列专题13一次函数含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年中考数学考点总动员系列专题13一次函数含解析聚焦考点☆温习理解1、正比例函数和一次函数的概念一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线;一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。k,b与函数图象所在象限:y=kx时(即b等于0,y与x成正比,此时的图象是是一条经过原点的直线)当k>0时,直线必通过一、三象限,y随x的增大而增
2、大;当k<0时,直线必通过二、四象限,y随x的增大而减小。y=kx+b(k,b为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限。当k>0,b<0,这时此函数的图象经过一,三,四象限。当k<0,b>0,这时此函数的图象经过一,二,四象限。当k<0,b<0,这时此函数的图象经过二,三,四象限。当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过
3、二、四象限,不会通过一、三象限。3、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。4、一次函数图象与坐标轴围成的三角形的面积直线y=kx+b与x轴的交点坐标为(,0),与y轴的交点坐标为(0,b);直线与两坐标轴围成的三角形的面积为S△=||·|b|=.名师点睛☆典例分类考点典例一、求函数自变量的取值范围【例1】(xx贵州安顺第12题)在函数中,自变量x的取值范围 .【答案】x≥
4、1且x≠2.【解析】试题解析:根据题意得:x-1≥0且x-2≠0,解得:x≥1且x≠2.考点:函数自变量的取值范围.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.【举一反三】1.(xx贵州六盘水第8题)使函数有意义的自变量的取值范围是()A.B.C.D.【答案】C.试题分析:根据二次根式,被开方数可得3-x≥0,解得x≤3,故选C.考点:函数自变量的取值范围.2.(xx广西南
5、宁市江南区维罗中学中考模拟)函数的自变量x的取值范围为()A.x≠1B.x>-1C.x≥-1D.x≥-1且x≠1【答案】D考点:函数自变量的取值范围,分式的意义.考点典例二、函数的图象【例2】(xx甘肃兰州第15题)如图1,在矩形中,动点从出发,沿方向运动,当点到达点时停止运动,过点做,交于点,设点运动路程为,,如图2所表示的是与的函数关系的大致图象,当点在上运动时,的最大长度是,则矩形的面积是()图1图2A.B.C.6D.【答案】B【解析】试题解析:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°
6、,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时BE=CE=x﹣,即,∴y=,当y=时,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面积为2×=5;故选B.考点:动点问题的函数图象.【点睛】本题主要考查了函数的图象.本题的关键是分析面积与时间的关系.【举一反三】1.(xx哈尔滨第10题)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离(单位:m)与他
7、所用的时间(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是C.小涛从报亭返回家中的平均速度是D.小涛在报亭看报用了15min【答案】D考点:函数的图象.2.(xx广西贵港市港南区中考二模)如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是( )A.B.C.D.【答案】B【解析】试题解析:①点P在AB上运动,点Q在BC上运动,即0≤t≤2,此
8、时AP=t,BP=4﹣t,QB=2t,故可得y=PB•QB=(4﹣t)•2t=﹣t2+4t,函数图象为开口向下的抛物线;②点P在AB上运动,点Q在CD上运动,即2<t≤4此时AP=t,BP=4﹣t,△BPQ底边PB上的高保持不变,为正方形的边长4,故可得y=BP
此文档下载收益归作者所有