资源描述:
《自动控制原理(潘丰)机械工业出版社习题及详细案答》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、【教材习题及解答】4-1【答】所谓根轨迹,是指系统开环传递函数的某一参量从零变化到无穷时,闭环系统特征方程式的根在s平面上变化而形成的轨迹。根轨迹反映了闭环系统特征根在s平面上的位置以及变化情况,所以应用根轨迹可以直观地分析参数变化对系统动态性能的影响,以及要满足系统动态要求,应如何配置系统的开环零极点,获得期望的根轨迹走向与分布。4-2【答】运用相角条件可以确定s平面上的点是否在根轨迹上;运用邮值条件可以确定根轨迹上的点所对应的参数值。4-3【答】考察开环放大系数或根轨迹增益变化时得到的闭环特征根移动轨迹称为常规根轨迹。除开环放大系数或根轨迹增益变化之外
2、的根轨迹称为广义根轨迹,如系统的参数根轨迹、止反馈系统根轨迹和零度根轨迹等。绘制参数根轨迹须通过闭环特征方程式的等效变换,将要考察的参数变换到开环传递函数中开环放大系数或根轨迹增益的位置上,才可应用根轨迹绘制规则绘制参数变化时的根轨迹图。止反馈系统的闭环特征方程1—G(s)H(s)=Q与负反馈系统的闭环特征方程l+GG)〃(s)=O存在一个符号差别。因此,正反馈系统的幅值条件与负反馈系统的幅值条件一•致,而正反馈系统的相角条件与负反馈系统的相角条件反向。负反馈系统的相角条件(冗+2航)是180。根轨迹,正反馈系统的相角条件(0+2航)是0。根轨迹。因此,绘
3、制正反馈系统的根轨迹时,凡是与相角有关的绘制法则,如实轴上的根轨迹,根轨迹渐近线与实轴的夹角,根轨迹出射角与入射角等,都要变兀+2加角度为0+2航。4・4【答】山于开环零极点的分布直接影响闭环根轨迹的形状和走向,所以增加开环零极点将使根轨迹的形状和走向发牛改变,从而使系统性能也随Z发牛变化。一般來说,增加合适的开环零点,可使闭环系统的根轨迹产生向左变化的趋势,从而改善系统的稳定性和快速性。增加开环极点时,增加了根轨迹的条数,改变了根轨迹渐近线的方向,可使闭环系统的根轨迹产牛向右变化的趋势,削弱系统的稳定性和快速性。增加开环零极点,都将改变根轨迹渐近线与实轴
4、的交点与夹角,对能改变根轨迹在实轴上的分布。4-5【解】⑴将5=-l+jV3代入系统的开环传递函数有:ZG(5)/f(5)=-180满足根轨迹的相角条件,故s=-1+j石是该根轨迹上的点。当点5=-l+jV3在根轨迹上时,冇G(s)H(s)=lo即K吕+1
5、•卜+2
6、・
7、s+4
8、于是,可得X*=12o(2)系统的特征方程为Q(s)=(s+l)(s+2)(s+4)+K*=0,由劳斯表S3114S278+K*J90-K*0575°8+K"易得使闭环系统稳处的疋值的范围为-8<疋<90。4-6【答案】(b)图4・10开环传递函数根轨迹图4-7[解】⑴孔皿⑸
9、=($+0.2)($+0.5)($+1)(d)绘制步骤如卜•:1)该系统有3个开环极点,无开环零点,分别为/?
10、=-0.2,卩2=-0.5,/?3=-lo2)系统有3条根轨迹分支,均趋向于无穷远处。°3)实轴上和[-0.5,-0.2]区域为根轨迹。4)由于旷加=3,故系统有3条根轨迹渐近线,其倾角和起点处标分别为:±(2k+)7U3=±60180°亍pz台「台,=(-0・2)+(-0.5)+(-1)=_056?n—m确定根轨迹的分离点。根据开环传递函数表达式,5)A(s)Bs)-As)B(s)=0,有A(s)=(s+0.2)(5+0.5)(s+1)
11、,B(s)=1,代入方程整理得到3s2+3・4s+0.8=0求解上述方程,得到5)=—0.8,s2=-0.33由于S2在根轨迹[-0.5,-0.2]上,故取分离点坐标为d=-0.3306)确定根轨迹与虚轴的交点。rti系统的开环传递函数,可得对应的闭环特征方程为?+1.7?4-0.85+0.1+A:*=0将s=je代入上式,整理得到-1.7/+0」+K*+j3+0.8q)=0分别令上式中的实部和虚部为零,即-1.7/+0.1+K*=0<—ct/+0.8^9=0解得60=±0.89,K*=1.26。系统的完整根轨迹如图4-11所示。图4・11题4-7(1)系
12、统的根轨迹图⑵G(QH(Q=K“+2),绘制步骤如下:(丁+25+10)1)该系统有2个开环极点,1个开环零点,分别为》,2=T±j3,Zi=-2o2)系统有2条根轨迹分支,一条终止于有限开环零点Z!=-2,另一条趋向于无穷远处。3)实轴上(-00-2]区域为根轨迹。4)由于n-m=lf故系统只有1条根轨迹渐近线,其倾和和起点坐标分别为:0严±(2;+f°。(A=0)乞卩)_£z_幺’令'(」+3j)+(_l_3j)-(-2)AS=二:=°n—m15)确定根轨迹的分离点或会合点。根据开环传递函数表达式,有M(s)=£+2s+10,B(s)=s+2,代入方程
13、A(s)BU)-AXs)B(s)=Of整理得到s2+4s-6=0求