欢迎来到天天文库
浏览记录
ID:47612361
大小:120.65 KB
页数:20页
时间:2019-10-07
《初三数学上下册知识点及重点难点总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.初三数学知识整理与重点难点总结第21章二次根式知识框图 理解并掌握下列结论:(1)是非负数; (2); (3);I.二次根式的定义和概念: 1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0 2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。II.二次根式√ā的简单性质和几何意义 1)a≥0;√ā≥0[双重非负性] 2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。.. IV.二次根式的乘法和除法 1运算法则
2、√a·√b=√ab(a≥0,b≥0) √a/b=√a/√b(a≥0,b>0) 二数二次根之积,等于二数之积的二次根。 2共轭因式 如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。V.二次根式的加法和减法 1同类二次根式 一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。 2合并同类二次根式 把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。 3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并Ⅵ.二次根式的混合运算 1确定运算顺序 2灵
3、活运用运算定律 3正确使用乘法公式 4大多数分母有理化要及时 5在有些简便运算中也许可以约分,不要盲目有理化VII.分母有理化..分母有理化有两种方法 I.分母是单项式 如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多项式 要利用平方差公式 如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b III.分母是多项式 要利用平方差公式 如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知识框图旋转的定义旋转对称中心 把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这
4、种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。.. 也就是说: ①中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。 ②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。中心对称图形 正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆只是中心对称图形 平行四边形等.第24章圆知识框图.. 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=
5、r;P在⊙O内,PO<r。 直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。 两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r
6、;相交R-r<P<R+r;内切P=R-r;内含P<R-r。圆的平面几何性质和定理 一有关圆的基本性质与定理 ⑴圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。 ⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半
7、。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 ⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;.. ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。 ③S三角=1/2*△三角形周长*内切圆半径 ④两相切圆的连心线过切点(连心线:两个圆心相连的线段) ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,
此文档下载收益归作者所有