上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)

上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)

ID:47609451

大小:1.11 MB

页数:15页

时间:2019-09-30

上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)_第1页
上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)_第2页
上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)_第3页
上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)_第4页
上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)_第5页
资源描述:

《上海市华东师范大学第二附属中学2018_2019学年高二数学3月月考试题(含解析)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、上海市华东师范大学第二附属中学2018-2019学年高二数学3月月考试题(含解析)一、填空题:1.设,则__________________;【答案】1【解析】【分析】通过运算,将复数转化为形式,即可得解.【详解】解:,所以Imz=1【点睛】本题考查复数的除法运算,复数的虚部的定义,其中正确进行复数的除法运算是解题的关键,是基础题.2.设,是纯虚数,其中i是虚数单位,则【答案】-2【解析】.【考点定位】考查复数的定义及运算,属容易题。3.若复数满足,则_______________;【答案】【解析】【分析】设出,代入,求出,根据得到结论【详解】解设代入得:-15-根据复数相等定义得

2、:,解得解得:,故【点睛】本题考查复数相等的定义、复数模的定义,待定系数法的使用是本题解题的主要方法。4.若是实系数方程的一个虚根,且,则_____________;【答案】4【解析】【分析】是实系数方程的一个虚根,解出方程的根为,根据复数模的定义,解得的值【详解】解:实系数方程的一个虚根所以,解得:【点睛】在复数范围内求解实系数方程的根,在时,两根互相共轭,共轭复数的模相等,根据模的值求出参数的值.5.已知空间四边形中,,点分别是边和的中点,且,则异面直线和所成角的大小是_________________________;【答案】【解析】【分析】要求异面直线和所成角,先找出与异面

3、直线和平行的两条相交的直线,探寻出异面直线和所成角,进而在三角形中解决角的大小问题【详解】解:取的中点,连接因为,为中点所以,同理:所以,异面直线和所成角即为所成角-15-异面直线和所成角即为或其补角在中,由余弦定理得异面直线和所成角为60°【点睛】异面直线所成角问题,要借助平行关系,找出具体角,然后在三角形中,求出角的大小。6.已知在长方体中,,则直线与平面所成的角的大小为_______________________;【答案】【解析】【分析】线面角是线在平面内的射影与线的夹角,先要求出直线在平面内的射影,由于平面与平面是垂直的,故过点作垂线交于点,根据面面垂直的性质定理即可得到

4、平面,所以,即为直线在平面内的射影,所以即为直线与平面所成角,在求解角的大小。【详解】解:过点作垂线交于点因为平面垂直平面所以,直线在平面内的射影为所以,即为直线与平面所成角在中,所以,直线与平面所成角的大小为【点睛】线面所成角常见解法是通过找出斜线在平面上的射影,射影与其直线所成角即为线面所成角的平面角,然后在三角形中利用解三角形的方法求解角的大小。7.已知点是边长为1的等边三角形所在平面外一点,且,则点到平面的距离是_________________________;【答案】【解析】【分析】-15-由于,所以点在平面的射影为底面等边三角形的重心,设重心为点,所以,,在三角形求解

5、。【详解】解:设等边三角形的重心为点,连接因为且,所以,平面所以,在等边中,在中,。【点睛】点到面的距离常见解决方法是:1.找出点到面的距离对应线段;2.等体积法求解。8.已知直线与平面,下列命题:①若平行内的一条直线,则;②若垂直内的两条直线,则;③若,且,则;④若且,则;⑤若且,则;⑥若,则;其中正确的命题为______________(填写所有正确命题的编号);【答案】⑤⑥【解析】【分析】如果命题找到反例就说明错误性,找不到反例可试着证明命题的正确性【详解】解:①若平行内的一条直线,则,还有可能在平面内,所以错误;②若垂直内的两条直线,则,这两条直线必须是垂直的,所以错误;③

6、若,且,则,缺少与相交的条件,所以错误;④若且,则,要垂直于平面才能得到,所以错误;⑤若且,则,由线面平行的性质定理可证得;⑥若,则,由面面平行的性质定理可证得;故选⑤⑥【点睛】说明命题的错误,可试着去寻找出反例;若命题是正确的,则应用相应定理进行证明。-15-9.设集合,其中是复数,若集合中任意两数之积及任意一个数的平方仍是中的元素,则集合___________________;【答案】或【解析】【分析】根据若集合中任意两数之积及任意一个数的平方仍是中的元素,分两种情况讨论,一种两者相乘等于自身的情况,第二种是均不等于自身情况,依次分析。【详解】解:集合中任意两数之积仍是中的元素

7、所以会出现两者相乘等于自身的情况,也有可能均不等于自身情况即其中有一项为或者(1)当时,或若,则或所以,或又因为集合中任意一个数的平方仍是中的元素所以,剩下的一个数必为-1,所以集合当时,则必须又因为集合中任意一个数的平方仍是中的元素则,解得,或,,所以,集合。(2)当时,三个等式相乘则得到所以得到或若,则三者必有一个为0,同(1)可得集合。若,则得到,当时,则可以得到且,则不成立;当时,则,不成立。故集合M为或-15-【点睛】求解这类问题时,要注意逻辑严谨分析,对每

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。