高考数学难点突破_难点30__概率

高考数学难点突破_难点30__概率

ID:47580436

大小:568.00 KB

页数:6页

时间:2019-09-21

高考数学难点突破_难点30__概率_第1页
高考数学难点突破_难点30__概率_第2页
高考数学难点突破_难点30__概率_第3页
高考数学难点突破_难点30__概率_第4页
高考数学难点突破_难点30__概率_第5页
资源描述:

《高考数学难点突破_难点30__概率》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、难点30概率概率是高考的重点内容之一,尤其是新增的随机变量这部分内容.要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法.●难点磁场(★★★★★)如图,用A、B、C三类不同的元件连接成两个系统N1、N2,当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1,N2正常工作的概率P1、P2.●案例探究[例1](★★★★★)有一容量为50的样本,数据的分组及各组

2、的频率数如下:[10,15]4[30,359[15,205[35,408[20,2510[40,453[25,3011(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图和累积频率的分布图.命题意图:本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法.知识依托:频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法.错解分析:解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别.技巧与方法:本题关键在于掌握三种表格的区别与联系.解:(1)由所给数据,计算得如下频率

3、分布表数据段[10,15[15,20[20,25[25,30[30,35[35,40[40,45总计频数45101198350频率0.080.100.200.220.180.160.061累积频率0.080.180.380.600.780.941(2)频率分布直方图与累积频率分布图如下:104[例2](★★★★★)某电器商经过多年的经验发现本店每个月售出的电冰箱的台数ζ是一个随机变量,它的分布列如下:ζ123……12P……设每售出一台电冰箱,电器商获利300元,如销售不出而囤积于仓库,则每台每月需花保养费用100

4、元,问电器商每月初购进多少台电冰箱才能使自己月平均收益最大?命题意图:本题考查利用概率中的某些知识如期望来解决实际问题.知识依托:期望的概念及函数的有关知识.错解分析:在本题中,求Ey是一个难点,稍有不慎,就将产生失误.技巧与方法:可借助概率分布、期望、方差等知识来解决日常生产生活中的实际问题.解:设x为月初电器商购进的冰箱台数,只须考虑1≤x≤12的情况,设电器商每月的收益为y元,则y是随机变量ζ的函数且y=,电器商平均每月获益的平均数,即数学期望为:Ey=300x(Px+Px+1+…+P12)+[300-10

5、0(x-1)]P1+[2×300-100(x-2)]P2+…+[300(x-1)-100]Px-1=300x(12-x+1)+[300×]=(-2x2+38x)由于x∈N,故可求出当x=9或x=10时,也即电器商月初购进9台或10台电冰箱时,收益最大.●锦囊妙记本章内容分为概率初步和随机变量两部分.第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验.第二部分包括随机变量、离散型随机变量的期望与方差.涉及的思维方法:观察与试验、分析与综合、一般化与特殊化.主要思维形式有

6、:逻辑思维、聚合思维、形象思维和创造性思维.●歼灭难点训练一、选择题1.(★★★★★)甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.现在三人同时射击目标,则目标被击中的概率为()1042.(★★★★)已知随机变量ζ的分布列为:P(ζ=k)=,k=1,2,3,则P(3ζ+5)等于()A.6B.9C.3D.4二、填空题3.(★★★★)1盒中有9个正品和3个废品,每次取1个产品,取出后不再放回,在取得正品前已取出的废品数ζ的期望Eζ=_________.4.(★★★★)某班有52人,男女各半,男女各自

7、平均分成两组,从这个班中选出4人参加某项活动,这4人恰好来自不同组别的概率是_________.三、解答题5.(★★★★★)甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算:(1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率;(3)至少有一人击中目标的概率.6.(★★★★)已知连续型随机变量ζ的概率密度函数f(x)=(1)求常数a的值,并画出ζ的概率密度曲线;(2)求P(1<ζ<).7.(★★★★★)设P在[0,5]上随机地取值,求方程x2+px+=0有实根的概率.8.(★★★★★)设一

8、部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周5个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元。求一周内期望利润是多少?参考答案难点磁场解:记元件A、B、C正常工作的事件分别为A、B、C,由已知条件P(A)=0.80,P(B)=0.90,P(C)=0.90.(1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。