欢迎来到天天文库
浏览记录
ID:47530074
大小:2.77 MB
页数:8页
时间:2020-01-13
《圆形磁场中地几个典型问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实用标准文案圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m/s从磁场边界上直径ab一端a点处射入磁场,已知该粒子比荷为q/m
2、=108C/kg,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa的夹角表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2.求最小面积的问题例2一带电质点的质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射
3、人如图3所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1/4圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小
4、半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。文档实用标准文案
5、例3如图5所示,x轴正方向水平向右,y轴正方向竖直向上.在半径为R的圆形区域内加一与xoy平面垂直的匀强磁场.在坐标原点O处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量q(q>0)且初速为v0的带电粒子,不计重力.调节坐标原点O处的带电微粒发射装置,使其在xoy平面内不断地以相同速率v0沿不同方向将这种带电微粒射入x轴上方,现要求这些带电微粒最终都能平行于x轴正方向射出,则带电微粒的速度必须满足什么条件?小结:研究粒子在圆形磁场中的运动时,要抓住圆形磁场的半径和圆周运动的半径
6、,建立二者之间的关系,再根据动力学规律运动规律求解问题.三、边界交点问题的解题关键―抓轨迹方程例4如图7所示,在xoy平面内x>0区域中,有一半圆形匀强磁场区域,圆心为O,半径为R=0.10m,磁感应强度大小为B=0.5T,磁场方向垂直xoy平面向里.有一线状粒子源放在y轴左侧(图中未画出),并不断沿平行于x轴正方向释放出电荷量为q=+1.6×10-19C,初速度v0=1.6×106m/s的粒子,粒子的质量为m=1.0×10-26kg,不考虑粒子间的相互作用及粒子重力,求:从y轴任意位置(0,y)
7、入射的粒子离开磁场时的坐标.点评:带电粒子在磁场中的运动是最能反映抽象思维与数学方法相结合的物理模型,本题则利用圆形磁场与圆周运动轨迹方程求交点,是对初等数学的抽象运用,能较好的提高学生思维.四、周期性问题的解题关键——寻找圆心角1.粒子周期性运动的问题例5如图9所示的空间存在两个匀强磁场,其分界线是半径为R的圆,两侧的磁场方向相反且垂直于纸面,磁感应强度大小都为B.现有一质量为m、电荷量为q的带正电粒子(不计重力)从A点沿aA方向射出.求:(1)若方向向外的磁场范围足够大,离子自A点射出后在两个
8、磁场不断地飞进飞出,最后又返回A点,求返回A点的最短时间及对应的速度.(2)若向外的磁场是有界的,分布在以O点为圆心、半径为R和2R的两半圆环之间的区域,上述粒子仍从A点沿QA方向射出且粒子仍能返回A点,求其返回A点的最短时间.2.磁场发生周期性变化例6如图12所示,在地面上方的真空室内,两块正对的平行金属板水平放置.在两板之间有一匀强电场,场强按如图13所示规律变化(沿y轴方向为正方向)在两板正中间有一圆形匀强磁场区域,磁感应强度按图14所示规律变化,如果建立如图12所示的坐标系
此文档下载收益归作者所有