从平面到空间的类比推理

从平面到空间的类比推理

ID:47488765

大小:85.00 KB

页数:7页

时间:2020-01-12

从平面到空间的类比推理_第1页
从平面到空间的类比推理_第2页
从平面到空间的类比推理_第3页
从平面到空间的类比推理_第4页
从平面到空间的类比推理_第5页
资源描述:

《从平面到空间的类比推理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、专题一:从平面到空间的类比推理类比是数学命题推广的基本方法之一,法国数学家拉普拉斯曾经说过:“即使在数学里,发现真理的主要工具也是归纳和类比.”类比推理就是在两类不同事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.从逻辑上说,类比推理就是将命题的外延扩大.类比推理一般具有如下三个特点:(1)类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果;(2)类比是从一种事物的特殊属性推测另一种事物的特殊属性;(3)类比的结果是猜测性的,因此,类比推理得

2、出的结论不一定正确,有待证明,但它却有探索、发现的功能,有助于我们揭示自然界的奥秘.类比推理的一般步骤是:(1)找出两类对象之间可以确切表述的相似特征;(2)用一类对象的已知特征去推测另一类对象的特征,从而抽象、概括出一个猜想;(3)检验猜想.近几年来,在全国各地的模拟试题和高考试题中,陆续出现了从平面到空间的类比推理题,这些题目立意新颖,内涵深刻,大多以填空题的形式出现,不需要严格的证明,只需要猜想出正确的结论即可,旨在考查学生观察-分析-比较-联想-类比-,mm猜0想的探索能力和创新意识,归纳起来,主要有以下几种类型:一、平面几何定理

3、类比到立体几何定理平面是空间的一部分,因此,平面中的不少结论都可以类比拓展到空间中去.数学家波利亚曾指出:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”类比方法:“直线”类比为“_____”,“角”类比为“________”,“角的两边”类比为“_________________”等.例1:对于平面几何中的命题:“7如果两个角的两边分别对应垂直,那么这两个角相等或互补.”在立体几何中,类比上述命题,可以得到命题:“__________________________.”其真假性是_________.我们所熟悉

4、的从平面几何定理到立体几何定理还有不少类比的实例,例如:(1)平几:平行于同一直线的两直线平行;立几:平行于同一平面的两平面平行.(2)平几:垂直于同一直线的两直线平行;立几:垂直于同一平面的两直线平行;垂直于同一直线的两平面平行.(3)平几:如果一条直线垂直于两平行直线中的一条直线,那么它也和另一条直线垂直;立几:如果一条直线垂直于两平行平面中的一个平面,那么它也和另一个平面垂直;如果一个平面垂直于两平行平面中的一个平面,那么它也和另一个平面垂直.(4)平几:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;立几:如果一

5、个二面角的两个面与另一个二面角的两个面分别平行,那么这两个二面角相等或互补.二、平面几何图形类比到空间几何体点、线、面是构成空间几何体的基本元素,构成几何体离不开平面图形,有不少几何体的底面或侧面是一些相类似的平面几何图形,因此,平面中某些特殊几何图形的性质也可以类比推广到相对应的特殊空间几何体中去.(一)平面中的三角形类比到空间中的________1.直角三角形类比到___________类比方法1:“直角三角形的直角边长、斜边长”类比为“_________________________”.例2(2003广东卷)在平面几何里,有勾股定

6、理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两相互垂直,则____________________________________________________.变式:在△ABC中,AB⊥AC,AD⊥BC,D为垂足,则AB2=BD·BC(射影定理)7.类似地,三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,则S△ABC,S△BC

7、O,S△BCD三者之间满足关系式_______________________________.类比方法2:“直角三角形的直角边长、斜边上的高”类比为“_____________________”.例3(2008深圳调研理)在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则,由此类比:三棱锥S—ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC上的高为h,则有结论_________________________.变式:Rt△ABC的两直角边分别为a、b,则其内切圆半径r;由此类比:三棱锥S-A

8、BC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,则其内切球半径R=___________________________。2.正三角形类比到________________类

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。