欢迎来到天天文库
浏览记录
ID:47478227
大小:1.45 MB
页数:12页
时间:2020-01-11
《空间几何体的三视图经典例题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.一、教学目标1.巩固空间几何体的结构及其三视图和直观图二、上课内容1、回顾上节课内容2、空间几何体的结构及其三视图和直观图知识点回顾3、经典例题讲解4、课堂练习三、课后作业见课后练习一、上节课知识点回顾1.奇偶性1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数
2、。2)利用定义判断函数奇偶性的格式步骤:..首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;2.单调性1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任
3、意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数);2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。3)设复合函数y=f[g(x)],其中u=g(x),A是y=f[g(x)]定义域的某个区间,B是映射g:x→u=g(x)的象集:①若u=g(x)在A上是增(或减)函数,y=f(u)在B上也是增(或减)函数,则函数y=f[g(x
4、)]在A上是增函数;②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y=f[g(x)]在A上是减函数。4)判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:任取x1,x2∈D,且x15、于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。2)利用函数单调性的判断函数的最大(小)值的方法:利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间6、[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);一、空间几何体的机构及其三视图和直观图知识点回顾1、中心投影与平行投影:..投影是光线通过物体,向选定的面投射,并在该在由得到图形的方法;平行投影的投影线是互相平行的,中心投影的投影线相交于一点.2、三视图三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。它具体包括:(1)正视图:物体前后方向投影所得到的投影7、图;(2)侧视图:物体左右方向投影所得到的投影图;(3)俯视图:物体上下方向投影所得到的投影图;三视图的排列规则:主在前,俯在下,左在右画三视图的原则:主、左一样,主、俯一样,俯、左一样。3、直观图:斜二测画法①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使=450(或1350),它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知8、图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。4、空间几何体的表面积(1).棱柱、棱锥、棱台的表面积、侧面积棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的表面积就是,也就是;它们的侧面积就是.(2).圆柱、圆锥、圆台的表面积、侧面积..圆柱的侧面展开图是,长是圆柱底面圆的,宽是圆柱的设圆柱的底面半径为r,母线长为
5、于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。2)利用函数单调性的判断函数的最大(小)值的方法:利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间
6、[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);一、空间几何体的机构及其三视图和直观图知识点回顾1、中心投影与平行投影:..投影是光线通过物体,向选定的面投射,并在该在由得到图形的方法;平行投影的投影线是互相平行的,中心投影的投影线相交于一点.2、三视图三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。它具体包括:(1)正视图:物体前后方向投影所得到的投影
7、图;(2)侧视图:物体左右方向投影所得到的投影图;(3)俯视图:物体上下方向投影所得到的投影图;三视图的排列规则:主在前,俯在下,左在右画三视图的原则:主、左一样,主、俯一样,俯、左一样。3、直观图:斜二测画法①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使=450(或1350),它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知
8、图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。4、空间几何体的表面积(1).棱柱、棱锥、棱台的表面积、侧面积棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的表面积就是,也就是;它们的侧面积就是.(2).圆柱、圆锥、圆台的表面积、侧面积..圆柱的侧面展开图是,长是圆柱底面圆的,宽是圆柱的设圆柱的底面半径为r,母线长为
此文档下载收益归作者所有