4.2.3直线与圆的方程的应用学案

4.2.3直线与圆的方程的应用学案

ID:47445502

大小:59.50 KB

页数:6页

时间:2020-01-11

4.2.3直线与圆的方程的应用学案_第页
预览图正在加载中,预计需要20秒,请耐心等待
资源描述:

《4.2.3直线与圆的方程的应用学案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、...4.2.3 直线与圆的方程的应用[学习要求]1.理解直线与圆的位置关系的几何性质;2.会建立平面直角坐标系利用直线与圆的位置关系及圆与圆的位置关系解决一些实际问题;3.会用“数形结合”的数学思想解决问题.[学法指导]通过直线与圆的方程在实际生活中的应用,培养分析问题与解决问题的能力,提高应用“数形结合”的数学思想解决问题的能力.[问题情境]直线与圆的方程的应用非常广泛,对于生产、生活实践以及平面几何中与直线和圆有关的问题,我们可以建立直角坐标系,通过直线与圆的方程,将其转化为代数问题来解决.本节我们通过几个例子说明直线与圆

2、的方程在实际生活以及平面几何中的应用.题型一 直线与圆的方程在实际生活中的应用 例1一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西60km处,受影响的范围是半径长为20km的圆形区域.已知港口位于台风中心正北30km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?word可编辑...小结 解决直线与圆的实际应用题的步骤为:(1)审题:从题目中抽象出几何模型,明确已知和未知;(2)建系:建立适当的直角坐标系,用坐标和方程表示几何模型中的基本元素;(3)求解:利用直线与圆的有关知识求出未知;(4)

3、还原:将运算结果还原到实际问题中去.题型二 用代数法证明几何问题例2Rt△ABC的斜边BC为定长m,以斜边的中点O为圆心作半径为定长n的圆,BC所在直线交此圆于P、Q两点,求证:

4、AP

5、2+

6、AQ

7、2+

8、PQ

9、2为定值.word可编辑...小结 用坐标方法解决平面几何问题的步骤为:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.题型三 直线与圆中的最值问题例3 某圆拱桥的水面跨度20m,拱高4m.现有一

10、船,宽10m,水面以上高3m,这条船能否从桥下通过?word可编辑...小结 针对这种类型的题目,即直线与圆的方程在生产、生活实践中的应用问题,关键是用坐标法将实际问题转化为数学问题,最后再还原为实际问题.跟踪训练3 设半径为3km的圆形村落,A、B两人同时从村落中心出发,A向东,B向北,A出村后不久改变前进方向,斜着沿切于村落圆周的方向前进,后来恰好与B相遇,设A、B两人的速度一定,其比为3∶1,问A、B两人在何处相遇?当堂检测1.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车

11、篷篷顶距离地面的高度不得超过(  )word可编辑...A.1.4米B.3.0米C.3.6米D.4.5米2.方程y=表示的图形是(  )3.如图所示,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是两个圆的公共点,则圆弧AC,CB与线段AB围成的图形面积S的取值范围是___________.1.利用坐标法解决平面几何问题,是将几何中“形”的问题转化为代数中“数”的问题,应用的是数学中最基本的思想方法:转化与化归的思想方法,事实上,数学中一切问题的解决都离不开转化与化归.所谓转化与化归思想是指把待

12、解决的问题(或未解决的问题)转化化归为已有知识范围内可解决的问题的一种数学意识.2.利用直线与圆的方程解决最值问题的关键是由某些代数式的结构特征联想其几何意义,然后利用直线与圆的方程及解析几何的有关知识并结合图形的直观性来分析解决问题.word可编辑

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。