欢迎来到天天文库
浏览记录
ID:47434354
大小:120.12 KB
页数:20页
时间:2020-01-11
《《粗糙集理论与方法》读书笔记》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《粗糙集理论与方法》读书笔记智能信息处理是当前信息科学理论和应用研究中的一个热点领域。由于计算机科学与技术的发展,特别是计算机网络的发展,每日每时为人们提供了大量的信息,信息量的不断增长,对信息分析工具的要求也越来越高,人们希望自动地从数据中获取其潜在的知识。特别是近20年间,知识发现(规则提取、数据挖掘、机器学习)受到人工智能学界的广泛重视,知识发现的各种不同方法应运而生。1粗糙集概述粗糙集(RoughSet,有时也称Rough集、粗集)理论是Pawlak教授于1982年提出的一种能够定量分析处理不精确、不
2、一致、不完整信息与知识的数学工具粗糙集理论最初的原型来源于比较简单的信息模型,它的基本思想是通过关系数据库分类归纳形成概念和规则,通过等价关系的分类以及分类对于目标的近似实现知识发现。由于粗糙集理论思想新颖、方法独特,粗糙集理论已成为一种重要的智能信息处理技术,该理论已经在机器学习与知识发现、数据挖掘、决策支持与分析等方面得到广泛应用。目前,有三个有关粗糙集的系列国际会议,即:RSCTC、RSFDGrC和RSKT。中国学者在这方面也取得了很大的成果,从2001年开始每年召开中国粗糙集与软计算学术会议;RSFD
3、GRC2003、IEEEGrC2005、RSKT2006、IFKT2008、RSKT2008、IEEEGrC2008等一系列国际学术会议在中国召开。粗糙集理论与应用的核心基础是从近似空间导出的一对近似算子,即上近似算子和下近似算子(又称上、下近似集)。经典Pawlak模型中的不分明关系是一种等价关系,要求很高,限制了粗糙集模型的应用。因此,如何推广定义近似算子成为了粗糙集理论研究的一个重点。目前,常见的关于推广粗糙集理论的研究方法有两种,即:构造化方法和公理化方法。构造化方法是以论域上的二元关系、划分、覆盖、
4、邻域系统、布尔子代数等作为基本要素,进而定义粗糙近似算子,从而导出粗糙集代数系统。公理化方法的基本要素是一对满足某些公理的一元集合算子,近似算子的某些公理能保证有一些特殊类型的二元关系的存在;反过来,由二元关系通过构造性方法导出的近似算子一定满足某些公理。事实上,有两种形式来描述粗糙集,一个是从集合的观点来进行,一个是从算子的观点来进行。那么,从不同观点采用不同的研究方法就得到粗糙集的各种扩展模型。扩展模型的研究以及基于其上的应用研究已经成为新的研究热点。粗糙集理论与其他处理不确定和不精确问题理论的最显著的区
5、别是它无需提供问题所需处理的数据集合之外的任何先验信息,所以对问题的不确定性的描述或处理可以说是比较客观的,由于这个理论未能包含处理不精确或不确定原始数据的机制,所以这个理论与概率论,模糊数学和证据理论等其他处理不确定或不精确问题的理论有很强的互补性。因此,研究粗糙集理论和其他理论的关系也是粗糙集理论研究的重点之一。如果我们将研究对象看成是现象,那么我们可以将这些现象分类。现象被分为确定现象与不确定现象。不确定现象有分为随机现象,模糊现象和信息不全的粗糙现象。如下所示:相对于前两种现象的处理,粗糙现象是基于不
6、完全的信息或知识去处理不分明的现象,因此需要基于观测或者测量到的部分信息对数据进行分类,这就需要与概率统计和模糊数学不同的处理手段,这就是粗糙集理论。直观地讲,粗糙集是基于一系列既不知道多了还是少了,也不知道有用还是没用的不确定、不完整乃至于部分信息相互矛盾的数据或者描述来对数据进行分析、推测未知信息。下面我们对粗糙集的基本特征、以及数学符号进行简述。2粗糙集的特点粗糙集的特点是利用不精确、不确定、部分真实的信息来得到易于处理、鲁棒性强、成本低廉的决策方案。因此更适合于解决某些现实系统,比如,中医诊断,统计报
7、表的综合处理等。粗糙集的另一个重要特点就是它只依赖于数据本身,不需要样本之外的先验知识或者附加信息,因此挑选出来的决策属性可以避免主观性,有英雄不问出身的意味。用粗糙集来处理的数据类型包括确定性的、非确定性的、不精确的、不完整的、多变量的、数值的、非数值的。粗糙集使用上、下近似来刻画不确定性,使得边界有了清晰的数学意义并且降低了算法设计的随意性。粗糙集理论与其他处理不确定和不精确问题理论的最显著的区别是它无需提供问题所需处理的数据集合之外的任何先验信息,所以对问题的不确定性的描述或处理可以说是比较客观的,由于
8、这个理论未能包含处理不精确或不确定原始数据的机制,所以这个理论与概率论,模糊数学和证据理论等其他处理不确定或不精确问题的理论有很强的互补性。因此,研究粗糙集理论和其他理论的关系也是粗糙集理论研究的重点之一。基于粗糙集理论的应用研究主要集中在属性约简、规则获取、基于粗糙集的计算智能算法研究等方面。由于属性约简是一个NP-Hard问题,许多学者进行了系统的研究。基于粗糙集的约简理论发展为数据挖掘提供了许
此文档下载收益归作者所有