2014年高考数学数列知识点及题型大总结

2014年高考数学数列知识点及题型大总结

ID:47339803

大小:677.50 KB

页数:16页

时间:2019-09-06

2014年高考数学数列知识点及题型大总结_第1页
2014年高考数学数列知识点及题型大总结_第2页
2014年高考数学数列知识点及题型大总结_第3页
2014年高考数学数列知识点及题型大总结_第4页
2014年高考数学数列知识点及题型大总结_第5页
资源描述:

《2014年高考数学数列知识点及题型大总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2014年高考数学数列知识点及题型大总结1等差数列9知识要点1.递推关系与通项公式是数列成等差数列的充要条件。2.等差中项:若成等差数列,则称的等差中项,且;成等差数列是的充要条件。3.前项和公式;是数列成等差数列的充要条件。4.等差数列的基本性质⑴反之,不成立。⑵⑶9⑷仍成等差数列。5.判断或证明一个数列是等差数列的方法:①定义法:是等差数列②中项法:是等差数列③通项公式法:是等差数列④前项和公式法:是等差数列练习:1.等差数列中,A.14  B.15  C.16  D.17解2.等差数列中,,则前10或11项的和最大。

2、解:∴为递减等差数列∴为最大。3.已知等差数列的前10项和为100,前100项和为10,则前110项和为-110解:∵ 成等差数列,公差为D其首项为,前10项的和为94.设等差数列的前项和为,已知①求出公差的范围,②指出中哪一个值最大,并说明理由。解:①②练习一、选择题1.已知等差数列中,等于(A)A.15B.30C.31D.64二、解答题2.等差数列的前项和记为,已知①求通项;②若=242,求9解:由,=2423.已知数列中,前和①求证:数列是等差数列②求数列的通项公式③设数列的前项和为,是否存在实数,使得对一切正整数都

3、成立?若存在,求的最小值,若不存在,试说明理由。解:①∵∴数列为等差数列。②9③要使得对一切正整数恒成立,只要≥,所以存在实数使得对一切正整数都成立,的最小值为。9等比数列9知识要点1.定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为。2.递推关系与通项公式3.等比中项:若三个数成等比数列,则称为的等比中项,且为是成等比数列的必要而不充分条件。4.前项和公式5.等比数列的基本性质,①反之不真!9②③为等比数列,则下标成等差数列的对应项成等比数列。

4、④仍成等比数列。1.等比数列与等比数列的转化①是等差数列是等比数列;②是正项等比数列是等差数列;③既是等差数列又是等比数列是各项不为零的常数列。2.等比数列的判定法①定义法:为等比数列;②中项法:为等比数列;③通项公式法:为等比数列;④前项和法:为等比数列。练习:1.2.已知数列是等比数列,且70猜想:是等比数列,公比为。证明如下:∵9即:,∴是首项为,公比为的等比数列。二、性质运用例1:在等比数列中,①求,②若解:⑴①由等比数列的性质可知:②由等比数列的性质可知,是等差数列,因为典例精析一、错位相减法求和例1:求和:解:

5、⑴⑵①②由①-②得:9点拨:①若数列是等差数列,是等比数列,则求数列的前项和时,可采用错位相减法;②当等比数列公比为字母时,应对字母是否为1进行讨论;③当将与相减合并同类项时,注意错位及未合并项的正负号。一、裂项相消法求和例2:数列满足=8,()①求数列的通项公式;则所以,=8+(-1)×(-2)=―10-2②对一切恒成立。9故的最大整数值为5。点拨:①若数列的通项能转化为的形式,常采用裂项相消法求和。②使用裂项消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项。99一.求数列的最大、最小项的方法:1、比差法:例:

6、已知数列的通项公式为:,求数列的最大项。2、比商法:()例:已知数列的通项公式为:,求数列的最大项。3、利用函数的单调性:研究函数的增减性例:已知数列的通项公式为:,求数列的最大项。二.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。1、分组法求数列:通项虽然不是等差等比数列,但通过拆分可以化为由等差、等比的和的形式,再分别用公式法求和。例:已知数列的通项为:,求2、错位相减法:利用等比数列前项和公式的推导方法求解,一般可解决一个等差数列和一个等比数列对应项相乘所得数列的求和。说明

7、:(1)一般地,如果数列是等差数列,是等比数列且公比为,求数列的前项和时,可采用这一思路和方法。具体做法是:乘以常数,然后错位相减,使其转化为等比数列问题求解。要善于识别题目类型,特别是当等比数列部分中公比为负数的情形更值得注意。(2)在写出“”与“”的表达式时,应特别注意将两式“错项对齐”,以便于下一步准确写出“”的表达式;3、裂项相消法:将数列的通项裂成两项之差求和时,正负相消,剩下首尾若干若。常见裂项有:、例:已知数列的通项为:,求前和4、倒序相加法:利用等差数列前项和公式的推导方法求解,将数列正着写,倒着写再相加。

8、典例精析例一:已知正项数列的前项和为,的等比中项,①求证:数列是等差数列;②若,数列的前项和为,求③在②的条件下,是否存在常数,使得数列为等比数列?若存在,试求出;若不存在,说明理由。16解:①的等比中项,所以数列是等差数列。②所以当且仅当3+=0,即=-3时,数列为等比数列。通项与前n项和的关系  任

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。