欢迎来到天天文库
浏览记录
ID:47181044
大小:57.50 KB
页数:9页
时间:2019-08-17
《2019春西师大版数学五下5.4《解方程》word教案6》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019春西师大版数学五下5.4《解方程》word教案6教材说明本节教材包括方程的意义、解方程和稍复杂的方程三部分内容。关于方程和解方程的知识,在初等代数中占有重要地位。中小学生在学习代数的整个过程中,几乎都要接触这方面的知识。从这个意义上说,前一节学习用字母表示数,为本节学习方程和解方程打下了基础。本节的学习内容,既包括方程的概念和解方程所依据的原理(等式基本性质),又包括方程的解法和应用。这些内容之间的逻辑联系如下图所示。其中较简单的方程,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个适当的数,就能求出x的值。稍复杂的方程,则需要两次变形,才能求出
2、x的值。如果说学习的目的全在于应用,那么学习方程的目的也是如此。因此,学习列方程解决实际问题与学习解方程一样,是本单元的学习重点。列方程解决实际问题,与学生在这之前所采用的列算式解决实际问题,它们的共同点是,都以四则运算和常见数量关系为基础,都需要分析数量关系。它们的区别主要是思考方法不同。列算式解决实际问题时,未知数始终作为一个“目标”,不列式运算,只能用已知数和运算符号组成算式,所以列式费思考,解题思路常常迂回曲折,局限性较大。列方程解决实际问题时,未知数能一个字母(如x)为代表和已知数一起参加列式运算,所以解题思路更加直截了当,降低了思维难度,适用面广。但由于
3、学生较长时期用算术方法解决问题,开始学习列方程解决问题时,往往受到算术思路的干扰。因此,在本节的教学中,注意过渡和对比,克服干扰,对于学生初步掌握列方程解决问题的思考方法和特点,初步体会列方程解决问题的优越性,具有重要意义。鉴于列方程解决问题的关键在于搞清数量之间的相等关系,所以教材在每个实际问题的解答中都列出了用文字、运算符号与等号表示的等量关系,但只要求学生学会这样思考,不要求学生解题时都书写出来,因此围以虚线框。附送:2019春西师大版数学五下5.4《解方程》word教案7教学建议方程的解与解方程的概念。(1)教学时可由复习方程的意义入手,再现前面出现过的用天
4、平称一杯水的情境,并写出方程100+x=250,使学生明确,所谓解方程,实际上是这样一个问题:当x的值是多少时,方程两边才能相等?明确了问题即解题的目标之后,就可以让学生自己思考、探索x的值。也可以组织小组讨论并交流。学生介绍自己的想法时,教师应注意引导学生不仅说出自己是怎样推算的,还应该启发他们说出这样推算的依据。在使学生通过验证确信x的值是150的基础上,教师可以提出问题:像这样能使方程左右两边相等的未知数的值,人们给它起了个名称,你们知道叫什么吗?学生回答后,让大家看书,找到答案,同时引出解方程的概念。教师可强调,方程的解是一个数,解方程是一个过程。(2)“做
5、一做”可让学生口头陈述检验过程,教师还可酌情补充一些类似的问题,让学生互相口答。2.例1(1)教学时,可先复习天平保持平衡的第一种变换情况。在此基础上给出例1,并明确指出,从今天起我们将学习怎样利用天平保持平衡的道理,来解方程。然后出示天平,用木块代替皮球,表示x+3=9,让学生看着天平思考:怎样才能使天平左边只剩“x”,而保持天平平衡?学生容易想到从两边各拿走3个,天平仍然平衡,进而再把这个变换过程反映到方程上来,就是方程两边同时减去3。也可以直接由天平保持平衡的复习引出解法。即提出问题:把天平两边同时拿走相同的物品,天平仍然平衡的道理,用到方程上,也就是方程两边
6、怎样做,方程左右两边仍然相等?学生回答后再让他们以x+3=9为例加以说明。教师还可追问:为什么要从方程两边同时减去3,而不是减去其他数?在这过程中,有必要特别强调方程每一步得到的都是等式,而不是递等式。最后引导学生验算x=6是不是正确答案。(2)教师可结合解题过程的板书,指出解题步骤和书写格式。包括验算的书写格式。初学时,可要求学生等号对其,以利培养良好的书写习惯。方程两边同时减去一个数的计算过程,开始练习时也应要求学生写出来,待熟练之后,再逐步省略。(3)由于数据小,一出示例题,不少学生就能口算出x=6。为了提高学生学习掌握新的思考方法的积极性,教师可强调这种思考
7、方法以后到中学解更复杂的方程时一直有用。为此,这里应有意识地避开算法多样化的讨论。3.例2及“做一做“。(1)教学时,可先复习天平保持平衡的第二种变换情况,然后演示例题并用天平表示,要使学生明确,这个方程是已知3个x等于18。要求一个x等于多少。然后提出问题:怎样变换,能使方程保持相等,又能得出x等于多少?可以让学生独立思考,完成课本例2中的填空,并自己验算。交流时,让学生先说出自己是怎样想的,用天平演示加以验证,再汇报填空结果与验算过程。接下去,可以让学生先练习解一道与例2相同类型的方程,再思考“想一想“中的问题,并以x-3=9与x÷3=18为例加以说明。然后
此文档下载收益归作者所有