初中数学教学典型案例分析《勾股定理》[1]

初中数学教学典型案例分析《勾股定理》[1]

ID:47142694

大小:105.00 KB

页数:15页

时间:2019-08-12

初中数学教学典型案例分析《勾股定理》[1]_第1页
初中数学教学典型案例分析《勾股定理》[1]_第2页
初中数学教学典型案例分析《勾股定理》[1]_第3页
初中数学教学典型案例分析《勾股定理》[1]_第4页
初中数学教学典型案例分析《勾股定理》[1]_第5页
资源描述:

《初中数学教学典型案例分析《勾股定理》[1]》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、初中数学教学案例分析《勾股定理》我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:1.在多样化学习活动中实现三维目标的整合;2.课堂教学过程中的预设和生成的动态调整;3.对数学习题课的思考;4.对课堂提问的思考。首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合案例1:《勾股定理》一课的课堂教学第一个环节:探索勾股定理的教学师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现? A的面积B的面积C的

2、面积图1   图2   图3   图4   生:从表中可以看出A、B两个正方形的面积之和等于正方形C的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。第二个环节:证

3、明勾股定理的教学教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。学生展示略通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。第三个环节:运用勾股定理的教学师(出示右图):右图是由两个正方形组成的图形,能否剪拼为一个面积不变的新的正方形,若能,看谁剪的次数

4、最少。生(出示右图):可以剪拼成一个面积不变的新的正方形,设原来的两个正方形的边长分别是a、b,那么它们的面积和就是a2+b2,由于面积不变,所以新正方形的面积应该是a2+b2,所以只要是能剪出两个以a、b为直角边的直角三角形,把它们重新拼成一个边长为a2+b2的正方形就行了。问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。第

5、四个环节:挖掘勾股定理文化价值师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的

6、发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。2.课堂教学过程中的预设和生成的动态调整案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天

7、平处于平衡状态。为了使第三架天平(图③)也处于平衡状态,则“?”处应放个物体b?aabc   图①图②ac? 图③通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。我讲解的设计思路是这样的:一.引导将图①和图②中的平衡状态,用数学式子(符号语言——数学语言)表示(现实问题数学化——数学建模):图①:2a=c+b.图②:a+b=c.因此,2a=(a+b)+b.可得:a=2b,c=3b.所以,a+c=5b.答案应填5.我自以为思维严密,有根有据。然而,在让学生展示自己的想法时,

8、却出乎我的意料。学生1这样思考的:假设b=1,a=2,c=3.所以,a+c=5,答案应填5.学生这是用特殊值法解决问题的,虽然特殊值法也是一种数学方法,但是存在很大的不确定性,不能让学生仅停留在这种浅显的思维表层上。面对这个教学推进过程的教学“新起点”,我必须深化学生的思维,但是,还不能打击他的自信心,必须保护好学生的思维成果。因此,我立刻放弃了准备好的讲解方案,以学生思维的结果为起点,进行调整。我先对学生1的方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。