欢迎来到天天文库
浏览记录
ID:23512150
大小:88.04 KB
页数:15页
时间:2018-11-08
《初中--数学教学典型案例分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、~初中数学教学典型案例分析许广民2010年3月24日我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:1.在多样化学习活动中实现三维目标的整合;2.课堂教学过程中的预设和生成的动态调整;3.对数学习题课的思考;4.对课堂提问的思考。首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合案例1:《勾股定理》一课的课堂教学第一个环节:探索勾股定理的教学师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现? A的面积B的面积C
2、的面积图1 图2 图3 图4 生:从表中可以看出A、B两个正方形的面积之和等于正方形C的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C~~~~的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。第二个环节:证明勾股定
3、理的教学教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。学生展示略通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。第三个环节:运用勾股定理的教学师(出示右图):右图是由两个正方形组成的图形,能否剪拼为一个面积不变的新的正方形,若能,看谁剪的次数最少。生(出示右图):可以
4、剪拼成一个面积不变的新的正方形,设原来的两个正方形的边长分别是a、b,那么它们的面积和就是~~~~a2+b2,由于面积不变,所以新正方形的面积应该是a2+b2,所以只要是能剪出两个以a、b为直角边的直角三角形,把它们重新拼成一个边长为a2+b2的正方形就行了。问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。第四个环节:挖掘勾股定理文化价值师:勾
5、股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们
6、课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。~~~~新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。2.课堂教学过程中的预设和生成的动态调整案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态。为了使第三架天平(图③)也处于平衡状态,则“?”
7、处应放个物体b?aabc 图①图②ac?~~~~ 图③通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。我讲解的设计思路是这样的:一.引导将图①和图②中的平衡状态,用数学式子(符号语言——数学语言)表示(现实问题数学化——数学建模):图①:2a=c+b.图②:a+b=c.因此,2a=(a+b)+b.可得:a=2b,c=3b.所以,a+c=5b.答案应填5.我自以为思维严密,有根有据。然而,在让学生展示自己的想法时,却出乎我的意料。学生1这样思考的:假设b=1,a=2,c=3.所以,a+c
8、=5,答案应填5.学生这是用特殊值法解决问题的,虽然特殊值法也是一种数学方法,但是存在很大的不确定性,不能让学生仅停留在这种浅显的思维表层上。面对这个教学推进过程的教学“新起点”,我必须深化学生的思维,但是,还不能打击他的自信心,必须保护好学生的思维成果。因此,我立刻放弃了准备好的讲解方案
此文档下载收益归作者所有