欢迎来到天天文库
浏览记录
ID:47096234
大小:462.51 KB
页数:14页
时间:2019-07-30
《初中数学几何题及答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)AFGCEBOD2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.APCDB求证:△PBC是正三角形.(初二)D2C2B2A2D1C1B1CBDAA13、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)ANFECDMB4、已知:如图,在四边形ABCD中,AD=
2、BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)第14页共14页1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.·ADHEMCBO (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二)·GAODBECQPNM2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以
3、下命题:·OQPBDECNM·A设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)PCGFBQADE4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.AFDECB求证:CE=CF.(初二)第14页共14页2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,
4、直线EC交DA延长线于F.EDACBF求证:AE=AF.(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.DFEPCBA求证:PA=PF.(初二)ODBFAECP4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.APCB求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠P
5、AB=∠PCB.(初二)PADCB3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.CBDA(初三)第14页共14页4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)FPDECBA经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.APCB2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.ACBPD ACBPD3、P为正方形ABCD内的一点,并且PA
6、=a,PB=2a,PC=3a,求正方形的边长.EDCBA4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典难题(一)1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,第14页共14页即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。2.如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150所以∠DCP
7、=300,从而得出△PBC是正三角形3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,由A2E=A1B1=B1C1=FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,从而可得∠A2B2C2=900,同理可得其他边垂直且相等,
8、从而得出四边形A2B2C2D2是正方形。第14页共14页4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。经典难题(二)1.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又A
此文档下载收益归作者所有