欢迎来到天天文库
浏览记录
ID:47093763
大小:1.14 MB
页数:18页
时间:2019-07-26
《2010江苏省高考数学真题(含问题详解)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用文档2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水
2、的签字笔。请注意字体工整,笔迹清楚。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。6.请保持答题卡卡面清洁,不要折叠、破损。参考公式:锥体的体积公式:V锥体=Sh,其中S是锥体的底面积,h是高。一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置上.1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲_____.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,
3、两只球颜色不同的概率是_▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。5、设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=_______▲_________文案大全实用文档6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S的值是______▲_______8、
4、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。11、已知函数,则满足不等式的x的范围是__▲___。12、设实数x,y满足3≤≤8,4≤
5、≤9,则的最大值是▲。13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则=____▲_____。文案大全实用文档14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是____▲____。二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15、(本小题满分14分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()·=0,求t的值。16、(本小题满分14
6、分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。(1)求证:PC⊥BC;(2)求点A到平面PBC的距离。17、(本小题满分14分)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?文
7、案大全实用文档18、(本小题满分16分)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。19、(本小题满分16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。(1)求数列的通项公式(用表示);(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。20、(本小题满分16分)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其
此文档下载收益归作者所有