【8A版】初中数学思想方法大全

【8A版】初中数学思想方法大全

ID:47084484

大小:316.00 KB

页数:23页

时间:2019-07-21

【8A版】初中数学思想方法大全_第1页
【8A版】初中数学思想方法大全_第2页
【8A版】初中数学思想方法大全_第3页
【8A版】初中数学思想方法大全_第4页
【8A版】初中数学思想方法大全_第5页
资源描述:

《【8A版】初中数学思想方法大全》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【MeiWei81-优质实用版文档】初中数学思想方法大全教学的本质到底是什么?很显然,教学最本质的东西就是传授知识,提高素质,培养能力。那么,数学教学的本质又是什么呢?众所周知:“数学是思维的体操。”数学思想方法是数学的精髓,它是数学中最本质最有价值的东西。它是知识转化为能力的桥梁。所以从某种意义上说,数学教学的本质就是数学思想方法的教学,在数学教学中,教师除了基础知识和基本技能的教学外,更应重视数学思想方法的参透,注意对学生进行数学思想方法的培养。一、数学思想方法是什么?数学思想方法是什么呢?其实它包换两个方面,即思想和方法。所谓数学思想,是指人们

2、对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提练上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是用数学解决问题的指导思想,它直接支配着数学的实践活动。所谓数学方法,则是在数学提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们合称为数学思想方法。因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的

3、培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响,使学生终生受益。正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。加强数学思想方法教学,必然对提高数学教学的质量起到至关重要的作用。二、初中阶段主要的数学思想方法有哪些?纵观初中新课标教材,涉及到的数学思想方法大体可分为三种类型。第一类是技巧型思想方法(也称低层次数学思想方法),包括消元、降次、换元、配方、待定系数法等,这类方法具有一定的操作步骤。比较容易为学生所接受。第二类是逻辑型的思想方法(也称较高层次数学思想方法),包括类比、抽象、概括、归纳、分析、综合

4、、演绎、特殊化方法、反证法等,这类方法都具有确定的逻辑结构,是普通适用的逻辑推理论证模型。第三类是宏观型思想方法(也称高层次数学思想方法),主要包括用字母表示数、数形结合、分类讨论、归纳猜想、化归转换、数学模型等,这类方法较多地带有思想观点的属性,揭示数学发展中极其普遍的方法,对数学发展起导向功能。学生较难领悟,需要教师在平时的教学中反复渗透。用图框表示是:数学思想和方法技巧型思想方法逻辑型思想方法宏观型数学思想方法消元法、配方法、换元法、待定系数法、判别式法、割补法等分析法、综合法、归纳法、反证法等函数和方程思想、分类讨论思想、数形结合思想、化归思

5、想等(一)、宏观型思想方法1.化归转化思想方法 【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。化归转化思想是指在解决问题的过程中,对问题进行转化,使之成为简单、熟知问题的数学思想方法,它是使一种数学对象在一定条件下转化为另一种数学对象的思想和方法。其核心就是将有待解决的问题转化为已有明确解决程序的问题

6、,以便利用已有的理论、技术来加以处理,从而培养学生用联系的、发展的、运动变化的观点观察事物、认识问题、解决问题。(1)、转化与化归的原则:熟悉化原则:即陌生问题--熟悉问题,就是常说的通过旧知解决新知简单化原则:即复杂问题--简单问题具体化原则:即抽象问题--具体问题或直观问题极端化原则:即运用极端化位置或状态的特性引出一般位置上或状态下的特性,从而获得解决问题的思路。和谐化原则:即对问题进行转化时要注意把条件和结论的表现形式转化为更具数、式和形内部固有和谐统一特点的形式,以帮助我们去确定解决问题的方法。(2)转化与化归的主要途径有:正与反、一般与特

7、殊的转化;常量与变量的转化;数与形的转化。有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,实现转化;④数学各分支之间的转化;⑤相等与不相等之间的转化;⑥实际问题与数学模型的转化.⑦利用“换元”、“画辅助线”、“消元法”、“配方法”,进行构造变形实现转化。(3)转化与化归的应用举例:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的

8、乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。