资源描述:
《数学北师大版八年级下册分式与分式方程第4节《分式方程(2)》教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第五章分式4.分式方程(二)总体说明本节是分式的第4小节,这是第二课时,本课时主要研究分式方程的解法,只要求会解可化为一元一次方程的分式方程(方程中的分式不超过两个).解分式方程的关键是把分式方程转化为整式方程,在引导学生探索分式方程的解法时,要注意体现这种转化的思想.一、学生知识状况分析学生的技能基础:在上一节课的基础上,学生基本了解分式方程的概念,熟悉等式的性质并能利用等式的性质解一元一次方程中,了解一般一元一次方程的解法,去分母,去括号,移项,合并同类项,化系数为1,并理解每一步的根据是什么,从而能通过观察类比的方法
2、,探索分式方程的解法并能理解解题步骤的根据.学生活动经验基础:本节课主要采用观察、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程转化为一元一次方程的基础上,再次体会数学转化思想.二、教学任务分析在上一节课中,学生通过对实际问题的分析,已经感受到分式方程是刻画现实世界的有效模型,本节课安排《分式方程》第二课时,旨在学会解分式方程,能从中体会数学转化思想的深刻含义,为此,本课时的教学目标是:知识与技能:(1)体会分式方程到整式方程的转化思想.(2)掌握分式方程的解法.数学能力:(1)培养学生的数学转化思想.(2)培养学
3、生的观察、类比、探索的能力.情感与态度:鼓励学生独立思考,认真观察,大胆猜想,积极动手,提高分析问题与解决问题能力.三、教学过程分析本节课设计了七个教学环节:回顾——想一想——试一试——议一议——练一练——学生小结——反馈练习.第一环节:回顾活动内容:1、解一元一次方程的步骤?活动目的:回顾等式性质,解一元一次方程的解法,着重复习去分母的步骤,为学生过渡到分式方程去分母.2、请写出与的最简公分母。第二环节:想一想活动内容:解下列分式方程: 活动目的:引导学生仔细观察,采用类比的方法找出解分式方程的关键――去分母,把
4、分式方程转化为整式方程即一元一次方程.注意事项:通过观察类比,学生容易发现只要方程两边同时乘以相同的因式,可以去分母,使方程变为学过的一元一次方程,从而解快了问题.另外,学生还能根据比例的性质:内项积等于外项积.解出这个方程,对于这部分学生应该鼓励,肯定数学一题多解.第三环节:做一做,议一议活动内容:解分式方程时,小明的解为,他的答案正确吗?活动目的:让学生通过解这个方程,并思考问题,从而产生疑惑,展开讨论,了解分式方程会产生增根.注意事项:在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要
5、提醒学生先将一个分母化为另一个分母的相反数.另外这个方程把学生易犯的错误集中在一起,例如-2这一项没乘公分母.通过仔细观察,积极讨论,学生都发现使原方程无意义,了解增根的概念,及产生的原因,提高了对方程验根的重视程度,总结出验根的方法(其方法是代入最简公分母中或原方程中进行检验,使分母为零的是增根,否则不是)第四环节:试一试活动内容:解下列分式方程活动目的:使学生进一步体会并熟悉分式方程的解法,并强调检验方程的解.注意事项:通过前面的探索体验,学生都很有兴趣并能基本掌握分式方程的解法,并在老师的指导下,规范书写过程.在解题
6、过程中,要提醒学生注意可先化简原方程,从而达到简便运算的目的.第五环节:想一想,议一议解分式方程的步骤:活动目的:通过前面三个题目的过程,让学生类比解一元一次方程的步骤,总结归纳解分式方程的步骤。第六环节:练一练活动内容:解下列分程(1)(2)活动目的:让学生认真完成从审题到最后检验的完整过程,熟练掌握解题方法.注意事项:学生解第一小题时,从比例式的性质出发,利用外项积等于内项积的性质,交叉相乘,和利用等式性质去分母一样,都能把分式方程转化为整式方程.解第二题时,有的学生因为审题不仔细,把和当成两个不同的整式,给计算带来不
7、必要的麻烦.反应出有些学生处理问题的能力的欠缺.第七环节:学生小结活动内容:在今天的学习活动中,你学会了哪些知识?掌握了哪些数学方法?活动目的:鼓励学生独立思考,并用自己的语言描述,然后再与同伴讨论、交流自己的结果.通过学生的回顾小结,加深分式方程解法和数学转化思想的理解.注意事项:学生在解方程过程中易犯的错误:1、解方程时忘记检验;2、去分母时忘记加括号;3、去分母时漏乘不含分母的项.第八环节:反馈练习活动内容:1.方程的解为()A.1B.-1C.D.02.方程的解为___________.3.解方程4.若关于的方程有增
8、根,则的值为_______.活动目的:通过学生的反馈练习,使老师能全面了解学生对分式方程解法的掌握程度,以及对增根的理解,以便老师能及时进行查漏补缺.注意事项:从学生的反馈练习中来看,学生能熟练解出分式方程,但对增根的理解及灵活处理还不够,在今后的练习中还要巩固渗透,要让学生弄清增根产生的原因,因此要正