欢迎来到天天文库
浏览记录
ID:47054722
大小:1.60 MB
页数:35页
时间:2019-07-10
《【7A文】导数专题(经典23题).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【MeiWei81-优质实用版文档】23个函数与导函数类型专题1、函数第1题已知函数,若,且,,求的取值范围.解析:⑴将不等式化成模式由得:,化简得:①⑵构建含变量的新函数构建函数:(,且)其导函数由求得:即:②⑶确定的增减性先求的极值点,由得:即:③由基本不等式代入上式得:故:即:由于,即,故:,即即:的极值点在时,由于有界,而无界故:【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】即:在时,,单调递减;那么,在时,单调递增.满足③式得恰好是⑷在由增减性化成不等式在区间,由于为单调递
2、减函数,故:应用不等式:得:即:,即:的最大值是代入①式得:,即:,即:④⑸在由增减性化成不等式在区间,由于为单调递增函数,故:由于极限,故:,代入①式得:⑤⑹总结结论综合④和⑤式得:.故:的取值范围是本题的要点:求出的最小值或最小极限值.特刊:数值解析由①式,设函数当时,用洛必达法则得:,则用数值解如下:0.30.40.50.60.70.80.91.0【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】0.20620.12730.07580.04220.02090.00830.00180
3、.00001.11.21.31.41.51.61.71.80.00150.00550.01140.01860.02690.03590.04540.0553其中,的最小值是,即,所以本题结果是.2、函数第2题已知函数,,,连续,若存在均属于区间的,且,使,证明:解析:⑴求出函数的导函数函数:①其导函数:②⑵给出函数的单调区间由于,由②式知:的符号由的符号决定.当,即:时,,函数单调递增;当,即:时,,函数单调递减;当,即:时,,函数达到极大值.⑶由区间的增减性给出不等式由均属于区间,且,得到:,若,则分属于峰值
4、点的两侧即:,.所以:所在的区间为单调递增区间,所在的区间为单调递减区间.故,依据函数单调性,在单调递增区间有:③在单调递减区间有:④⑷将数据代入不等式由①式得:;;【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】代入③得:,即:,即:⑤代入④式得:,即:,即:⑥⑸总结结论结合⑤和⑥式得:.证毕.本题的要点:用导数来确定函数的单调区间,利用单调性来证明本题.特刊:特值解析由⑶已得:,,且:,若:,则:即:,故:当:,时,当:,时,故:处于这两个特值之间,即:3、函数第3题已知函数.若函
5、数的图像与轴交于两点,线段中点的横坐标为,试证明:.解析:⑴求出函数导函数函数的定义域由可得:.导函数为:①⑵确定函数的单调区间当,即时,,函数单调递增;当,即时,,函数单调递减;【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】当,即时,,函数达到极大值.②⑶分析图像与轴的交点,求出区间由于,若与轴交于两点,则其极值点必须.即:,即:③考虑到基本不等式及③式得:即:,即:,即:结合,即:得:④⑷求出点以及关于极值点的对称点两点分居于极值点两侧,即:,设:,,则,且(因)设:,则与处于相
6、同得单调递减区间.于是:,即:故:⑤将替换成代入就得到:⑥【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】⑸比较点的函数值,以增减性确定其位置构造函数:将⑤⑥式代入上式得:⑦其对的导函数为:⑧由于④式及,所以.即:是随的增函数,其最小值是在时,即:由⑦式得:,故:.当时,,即:由于和同在单调递减区间,所以由得:即:,即:或⑨⑹得出结论那么,由⑨式得:即:.证毕.本题的关键:首先求得极值点,以为对称轴看的对称点就可以得到结论.具体措施是:设点,利用函数的单调性得到4、函数第4题已知函数.
7、若,求的最大值.解析:⑴求出函数的解析式由于和都是常数,所以设,,利用待定系数法求出函数的解析式.【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】设:,则:其导函数为:,则:所以:,,函数的解析式为:①⑵化简不等式即:,故:②⑶构建新函数,并求其极值点构建函数③其导函数:④要使②式得到满足,必须.即:,或的最小值等于0故当取得极值时有:,由④式得极值点:此时的由③得:⑤⑷求的最大值由⑤式得:,则:⑥令:,则⑥式右边为:()其导函数为:⑦当,即:时,,单调递增;当,即:时,,单调递减;当
8、,即:时,,达到极大值.此时,的极大值为:⑧⑸得出结论将⑧代入⑥式得:,故:的最大值为本题的关键:利用已知的不等式得到关于的不等式【MeiWei81-优质实用版文档】【MeiWei81-优质实用版文档】即⑥式,然后求不等式⑥式的极值.5、函数第5题已知函数的最小值为,其中.若对任意的,有成立,求实数的最小值.解析:⑴利用基本不等式求出利用基本不等式或,得:即:,即:已知的最小值为,故,即:或者,将的
此文档下载收益归作者所有