欢迎来到天天文库
浏览记录
ID:47053706
大小:83.00 KB
页数:23页
时间:2019-07-10
《《预防医学》简答题与答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四、简答题 1、统计资料可以分成几类? 答:根据变量值的性质,可将统计资料分为数值变量资料(计量资料),无序分类变量资料(计数资料),有序分类变量资料(等级资料或半定量资料)。用定量方法测定某项指标量的大小,所得资料,即为计量资料;将观察对象按属性或类别分组,然后清点各组人数所得的资料,即为计数资料;按观察对象某种属性或特征不同程度分组,清点各组人数所得资料称为等级资料。 2、不同类型统计资料之间的关系如何? 答:根据分析需要,各类统计资料可以互相转化。如男孩的出生体重,属于计量资料,如按体重正常与否分两类,则资料转化为计数资料;如按体重
2、分为:低体重,正常体重,超体重,则资料转化为等级资料。计数资料或等级资料也可经数量化后,转化为计量资料。如性别,结果为男或女,属于计数资料,如男性用0(或1),女性用1(或0)表示,则将计数资料转化为计量资料。 3、频数分布有哪两个重要特征? 答:频数分布有两个重要特征:集中趋势和离散趋势,是频数分布两个重要方面。将集中趋势和离散趋势结合起来分析,才能全面地反映事物的特征。一组同质观察值,其数值有大有小,但大多数观察值集中在某个数值范围,此种倾向称为集中趋势。另一方面有些观察值较大或较小,偏离观察值集中的位置较远,此种倾向称为离散趋势。 4
3、、标准差有什么用途? 答:标准差是描述变量值离散程度常用的指标,主要用途如下:①描述变量值的离散程度。两组同类资料(总体或样本)均数相近,标准差大,说明变量值的变异度较大,即各变量值较分散,因而均数代表性较差;反之,标准差较小,说明变量异度较小,各变量值较集中在均数周围,因而均数的代表性较好。②结合均数描述正态分布特征;③结合均数计算变异系数CV;④结合样本含量计算标准误。 5、变异系数(CV)常用于哪几方面? 答:变异系数是变异指标之一,它常用于以下两个方面:①比较均数相差悬殊的几组资料的变异度。如比较儿童的体重与成年人体重的变异度,应使
4、用CV;②比较度量衡单位不同的几组资料的变异度。如比较同性别,同年龄人群的身高和体重的变异度时,宜用CV。 6、制定参考值范围有几种方法?各自适用条件是什么? 答:制定参考值范围常用方法有两种:①正态分布法:此法是根据正态分布的原理,依据公式:X±uS计算,仅适用于正态分布资料或对数正态分布资料。95%双侧参考值范围按:X±1.96S计算;95%单侧参考值范围是:以过低为异常者,则计算:X-1.645S,过高为异常者,计算X+1.645S。若为对数正态分布资料,先求出对数值的均数及标准差,求得正常值范围的界值后,反对数即可。②百分位数法。用
5、P2.5~P97.5估计95%双侧参考值范围;P5或P95为95%单侧正常值范围。百分位数法适用于各种分布的资料(包括分布未知),计算较简便,快速。使用条件是样本含量较大,分布趋于稳定。一般应用于偏态分布资料、分布不明资料或开口资料。 7、计量资料中常用的集中趋势指标及适用条件各是什么?答:常用的描述集中趋势的指标有:算术均数、几何均数及中位数。①算术均数,简称均数,反映一组观察值在数量上的平均水平,适用于对称分布,尤其是正态分布资料;②几何均数:用G表示,也称倍数均数,反映变量值平均增减的倍数,适用于等比资料,对数正态分布资料;③中位数:
6、用M表示,中位数是一组观察值按大小顺序排列后,位置居中的那个观察值。它可用于任何分布类型的资料,但主要应用于偏态分布资料,分布不明资料或开口资料。 8、标准差,标准误有何区别和联系? 答:标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别:①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;②用途不同;标准差常用于表示变量值对均数波动的大小,与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误常用于表示样本统计量(样本均数,样本率)对总体参数(总体均数,总体率)的波动情况,用于估计参数的
7、可信区间,进行假设检验等。③它们与样本含量的关系不同:当样本含量n足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0。联系:标准差,标准误均为变异指标,如果把样本均数看作一个变量值,则样本均数的标准误可称为样本均数的标准差;当样本含量不变时,标准误与标准差成正比;两者均可与均数结合运用,但描述的内容各不相同。 9、统计推断包括哪几方面内容? 答:统计推断包括:参数估计及假设检验两方面。参数估计是指由样本统计量(样本均数,率)来估计总体参数(总体均数及总体率),估计方法包括点值估计及区间估计。点值估计直接用样本统计量来代表总体参数
8、,忽略了抽样误差;区间估计是按一定的可信度来估计总体参数所在的范围,按X±uσX或 X±uSX来估计。假设检验是根据样本所提供的信息,推断总体参数是否相等。 10、假设检验的目的
此文档下载收益归作者所有