ARMA模型及SAS求解

ARMA模型及SAS求解

ID:47037135

大小:1.16 MB

页数:39页

时间:2019-07-03

ARMA模型及SAS求解_第1页
ARMA模型及SAS求解_第2页
ARMA模型及SAS求解_第3页
ARMA模型及SAS求解_第4页
ARMA模型及SAS求解_第5页
资源描述:

《ARMA模型及SAS求解》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第6讲时间序列分析教材:应用时间序列分析课件(中国人民大学王燕),SAS如何解及下载例程。时间序列分析(Timeseriesanalysis)是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。时间序列是把反映现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的一组统计数字序列。时间序列又称动态数列或时间数列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。

2、应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文

3、学和海洋学等方面。时间序列分析主要用途:①系统描述。根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。②系统分析。当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。③预测未来。一般用ARMA模型拟合时间序列,预测该时间序列未来值。④决策和控制。根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。基本步骤:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。②根据动态数据作相关图,进行

4、相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊

5、情况的自回归模型、滑动平均模型或组合ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。本章重点:1)建立阶自回归模型:2)建立阶移动平均模型:3)模型:三个模型的拖尾、截尾性模型自相关系数偏自相关系数拖尾阶截尾阶截尾拖尾age39of39拖尾拖尾建模步骤:平稳非白噪声序列?计算ACF,PACFARMA模型识别估计模型中未知参数值模型优化模型预测模型检验即残差白噪声检验NY图6.0自回归滑动平均(ARMA)模型建模

6、步骤Y平滑处理N一.几个概念随机过程:{X(t);-¥

7、论随机序列{Xk}的样本时,只能考虑一个样本的有限部分,比如{x1,x2,…,xn}是序列{Xk}的一段观测值序列.在理论讨论时,为了方便又不得不涉及无穷数列.这些都是学习和掌握时间序列分析时,首先要认清的起点.序列的分布:回忆随机变量X的定义便知,它的特征被它的概率分布所确定.同样,随机序列也被它的概率分布所确定.不过,随机序列的分布是无穷个随机变量的概率分布,其复杂性可以想像.这里为了避免涉及太深的概率论概念,我们仅考虑最简单的,即Xk~N(mk,s2k),它有密度fk(x)=(2ps2k)-1/2exp{(x-mk)2/2s2k}

8、age39of39而且(Xk+1,Xk+2,…,Xk+m)有联合正态分布.于是有:期望(均值):EXk=òxfk(x)dx=mk,方差:Var(Xk)=E(Xk-mk)2=ò(x-mk)2fk(x)dx=s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。