数学建模最佳旅游路线地选择模型

数学建模最佳旅游路线地选择模型

ID:47036093

大小:308.84 KB

页数:14页

时间:2019-07-03

数学建模最佳旅游路线地选择模型_第1页
数学建模最佳旅游路线地选择模型_第2页
数学建模最佳旅游路线地选择模型_第3页
数学建模最佳旅游路线地选择模型_第4页
数学建模最佳旅游路线地选择模型_第5页
资源描述:

《数学建模最佳旅游路线地选择模型》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用文档2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D

2、中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):12所属学校(请填写完整的全名):鲁东大学参赛队员(打印并签名):1.张亭2.任雪雪3.卜范花指导教师或指导教师组负责人(打印并签名):日期:2010年8月2日赛区评阅编号(由赛区组委会评阅前进行编号):标准文案实用文档2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):标准文案实用文档最佳旅游路线的

3、选择模型摘要:本文研究的是最佳旅游路线的选择问题,此问题属于旅行商问题,我们建立了路径最短,花费最少,省钱、省时、方便三个模型。根据周先生的不同需求,我们用改良圈算法和多目标规划解决了该问题,之后我们结合实际情况对三个模型进行科学地误差分析,并分析了该算法的复杂性。针对问题一,题目中给出了100个城市的经纬度,要求我们为周先生设计一条最短的旅行路线,即从驻地出发,经过每个城市恰好一次,再回到驻点。由此可知,此问题属于旅行商问题。首先,我们按附件所给各城市的顺序编号,以两城市间的直线距离代替实际距离。然后,我们运用改良圈算法求解旅行商问题,以

4、任意两点之间的最短距离矩阵为权重,利用邻接矩阵构造无向图,据题意不知周先生的起始地点,因此利用Matlab软件重复进行100次改良圈算法即以每一个城市为出发点,从100个Hamilton圈得到了最优圈,即最短的旅行路线。其最短的旅游线路长度为公里。针对问题二,该问题的目的是为周先生设计最经济的旅行方案,我们同样运用问题一所建的改良圈算法模型,将模型一中的权值矩阵“最短距离”换为“最少花费”,建立模型二。本题规定周先生旅游的起始城市为第一个城市,同样利用费用矩阵构造无向图,再利用Matlab软件进行次改良圈算法,就会得到最优圈,即花费最少的旅

5、行路线,其最少花费为元。针对问题三,这里根据周游退休后以享受为主,在模型一、模型二结果的基础上,我们设定原则:优先考虑方便,当两地乘坐飞机所用的费用比乘坐豪华大巴所用费用高不出某个范围时,则乘坐飞机。此处通过动态规划来实现此方案,在最经济、最短的路线的基础之上,通过改换乘坐方式,使最终的花费偏离出最小花费的值在我们的允许范围内,从而达到了省钱、省时又方便的目的。最终得到满足周游先生自身需要的旅行方案。之后我们结合实际情况对三个模型进行科学误差分析,并分析了所用算法的复杂性,同时对我们解决旅行商所采用的算法进行了评价,这使我们对旅行商问题有了

6、更深一步的理解。关键词:旅行商问题;改良圈算法;动态规划;误差分析;标准文案实用文档1问题重述周先生退休后想到各地旅游,计划到100个城市旅游。需要我们按下面要求制定出行方案。(1)按地理位置(经纬度)设计最短路旅行方案。数据见Matlab的mat数据文件(文件名为第2题B.mat),其中表示对应点的经度,表示对应点的纬度。(2)假设任意两个城市之间都有豪华大巴和飞机航线,乘坐飞机的价格是两点间距离1.5倍(单位:元),豪华大巴的价格是分段的,在500公里之内是距离的2倍,超过500公里且在1000公里之内的是距离的1.4倍,超过1000公

7、里的是距离的1.1倍,如果2010年5月1日零时周先生从第一个城市出发,每个城市停留24小时,可选择航空、豪华大巴,设计最经济的旅行方案。(3)假设豪华大巴和飞机都可以随到随走,飞机的速度是1000公里/小时,豪华大巴的速度是100公里/小时,要综合考虑省钱、省时又方便,设定你的评价准则,建立数学模型,修订你的方案。(4)对算法作复杂性、可行性及误差分析。(5)关于旅行商问题提出对所采用的算法的理解及评价。2条件假设与符号约定2.1条件假设(1)假设在旅途中的车速一定,且不考虑突发事件干扰飞机或豪华大巴的行程;(2)假设本题所涉及的城市中,

8、每两个城市之间都有直达的航班和豪华大巴;(3)假设两城市之间距离用城市之间的直线距离来表示;(4)假设不考虑买不上票和机车晚点等情况;(5)假设不考虑机票和豪华大巴打折情况。2.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。