欢迎来到天天文库
浏览记录
ID:47024596
大小:366.32 KB
页数:22页
时间:2019-06-28
《托勒密定理及圆地其它定理》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文档托勒密定理 定理图定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.定理提出 定理的内容。 摘出并完善后的托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。 定理表述:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面
2、积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.定理内容指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD∠ABE=∠ACD,连接DE. 则△ABE∽△ACD 所以BE/CD=AB/AC,即BE·AC=AB·CD(1)文案大全实用标准文档 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, 所以△ABC∽△AED. BC/ED=AC/AD
3、,即ED·AC=BC·AD(2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a−b)(c−d)+(a−d)(b−c)=(a−c)(b−d),两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)
4、的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。 二、 设ABCD是圆内接四边形。在弦BC上,圆周角∠BAC=∠BDC,而在AB上,∠ADB=∠ACB。在AC上取一点K,使得∠ABK=∠CBD;因为∠ABK+∠CBK=∠ABC=∠CBD+∠ABD,所以∠CBK=∠ABD。因此△ABK与△DBC相似,同理也有△ABD~△KBC。因此AK/AB=CD/BD,且CK/BC=DA/BD;因此AK·BD=AB·CD,且CK·BD=BC·DA;两式相加,得(AK+CK)·BD=AB·CD+BC·DA;但AK+C
5、K=AC,因此AC·BD=AB·CD+BC·DA。证毕。 三、 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC. 证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC文案大全实用标准文档①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD②。①+②得AC
6、(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC. 四、广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m,n,则有: m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(A+C) 推论 1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、推广 托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆
7、或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模, 得不等式AC·BD≤
8、(a-b)(c-d)
9、+
10、(b-c)(a-d)
11、=AB·CD+BC·AD运用要点 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD弦切角定理1.推论内容2.应用举例文案大全实用标准文档弦切角定义 顶点在圆上,一边和圆相交,另 图示一边和圆相切的角叫
12、做弦切角。(弦切角就是切
此文档下载收益归作者所有