欢迎来到天天文库
浏览记录
ID:47019757
大小:350.79 KB
页数:5页
时间:2019-05-05
《2019春八年级数学下册勾股定理第3课时利用勾股定理作图或计算导学案新版新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十七章勾股定理教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-12)17.1勾股定理第3课时利用勾股定理作图或计算学习目标:1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.重点:会运用勾股定理确定数轴上表示实数的点及解决网格问题.难点:灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.自主学习一、知识回顾1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表
2、示3,-2.5的点吗?2.求下列三角形的各边长.课堂探究一、要点探究探究点1:勾股定理与数轴想一想1.你能在数轴上表示出的点吗?呢?(提示:可以构造直角三角形作出边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数?3.以下是在数轴上表示出的点的作图过程,请你把它补充完整.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点
3、.要点归纳:利用勾股定理表示无理数的方法:教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片13-17)5.课堂小结(见幻灯片30)(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.类似地,利用勾股定理可以作出长为线段,形成如图所示的数学海螺.典例精析例1如图,数轴上点A所表示的数为a,求a的值.易错点拨:求点表示的数时注意画弧的起点不从原点起,因而所表示的数不是斜边长.针对训练1.如图,点A表示的实
4、数是( )第1题图第2题图2.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为( )3.你能在数轴上画出表示的点吗?探究点2:勾股定理与网格综合求线段长典例精析例2在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC各顶点的坐标,并求出此三角形的周长.方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.例3如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求AB边上的高.方法
5、总结:此类网格中求格点三角形的高的题,常用方法是利用网格求面积,再用面积法求高.针对训练1.如图是由4个边长为1的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多可以作出多少条长度为的线段?2.如图,在5×5正方形网格中,每个小正方形的边长均为1,画出一个三角形的长分别为.教学备注配套PPT讲授4.探究点3新知讲授(见幻灯片18-21)5.课堂小结(见幻灯片30)探究点3:勾股定理与图形的计算典例精析例4如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.方法总结:折叠问题中结合勾股
6、定理求线段长的方法:(1)设一条未知线段的长为x(一般设所求线段的长为x);(2)用已知线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.教学备注配套PPT讲授5.课堂小结(见幻灯片29)6.当堂检测(见幻灯片22-28)变式题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.针对训练1.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的
7、面积.二、课堂小结在数轴上表示出无理数的点通常与网格求线段长或面积结合起来利用勾股定理解决网格中的问题利用勾股定理作图或计算通常用到方程思想利用勾股定理解决折叠问题及其他图形的计算当堂检测1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25第1题图第2题图第3题图2.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在
8、数轴上( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的
此文档下载收益归作者所有