欢迎来到天天文库
浏览记录
ID:46868866
大小:202.00 KB
页数:7页
时间:2019-11-28
《中考数学中的分段函数题型解法举例》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.....中考数学中的分段函数题型解法举例 仪陇县实践数学名师工作室 何 直分段函数,是近几年中考数学中经常遇到的题型。它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。这些分段函数都是直线型。通常是正比例函数的图像和一次函数的图像构成。下面我们归纳分析如下,供学复习时参考。1、二段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲
2、、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?解析:设正比例函数的解析式为:y=k1x,因为图象经过点(3,),所以,=k1×3,所以k1=,所以y=x,0<x<3设一次函数的解析式(合作部分)是y=k2x+b,(是常数)因为图象经过点(3,),(5,),所以,由待定系数法得:,解得:.一次函数的表达式为,所以,当时,,解得完成此房屋装修共需9天。方法2解:由正比例函数解析式可知:甲
3、的效率是,乙工作的效率:甲、乙合作的天数:(天)甲先工作了3天,完成此房屋装修共需9天(2)由正比例函数的解析式:y=x,可知:甲的工作效率是,学习参考.....所以,甲9天完成的工作量是:,甲得到的工资是:(元)评析:在这里未知数的系数的意义是表示他们的工作效率。例2、一名考生步行前往考场,10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了()A.20分钟B.22分钟C.24分钟D.26分钟解析:步行前往考
4、场,是满足正比例函数关系,设正比例函数的解析式为:y=k1x,因为图象经过点(10,),所以,=k1×10,所以k1=,所以y=x,0<x<10由正比例函数解析式可知:甲的效率是,所以,步行前往考场需要的时间是:1÷=40(分钟),乘出租车赶往考场,是满足一次函数关系,所以,设一次函数的解析式是y=k2x+b,(是常数),因为图象经过点(10,),(12,),所以,由待定系数法得:,解得:解得:,一次函数的表达式为:,所以,乘出租车赶往考场用的时间是:x=÷,解得:x=6分钟,所以,先步行前往考场,后乘出租车赶往
5、考场共用时间为:10+6=16分钟,所以,他到达考场所花的时间比一直步行提前了:40-16=24(分钟),故选C。评析:在这里未知数的系数的意义是表示他们的行使速度。学习参考.....例3、某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上
6、市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?解析:(1)由图3可得,当0≤t≤30时,市场日销售量y与上市时间t的关系是正比例函数,所以设市场的日销售量:y=kt,∵点(30,60)在图象上,∴60=30k.∴k=2.即y=2t,当30≤t≤40时,市场日销售量y与上市时间t的关系是一次函数关系,所以设市场的日销售量:y=k1t+b,因为点(30,60)和(40,0)在图象上,所以,解得k1=-6,b=240.∴y=-6t+240.综上可知,当0≤t≤30时,市场的日销售量:y=2t,当30≤t≤
7、40时,市场的日销售量:y=-6t+240。(2)由图4可得,当0≤t≤20时,市场销售利润w与上市时间t的关系是正比例函数,所以设市场的日销售量:w=kt,∵点(20,60)在图象上,∴60=20k.∴k=3.即w=3t,当20≤t≤40时,市场销售利润w与上市时间t的关系是常数函数,所以,w=60,∴当0≤t≤20时,产品的日销售利润:m=3t×2t=6t2;∵k=6>0,所以,m随t的增大而增大,∴当t=20时,产品的日销售利润m最大值为:2400万元。当20≤t≤30时,产品的日销售利润:m=60×2t=
8、120t,学习参考.....∵k=120>0,所以,m随t的增大而增大,∴当t=30时,产品的日销售利润m最大值为:3600万元;当30≤t≤40时,产品的日销售利润:m=60×(-6t+240)=-360t+14400;∵k=-360<0,所以,m随t的增大而减小,∴当t=30时,产品的日销售利润mm最大值为:3600万元,综上可知,当t=30天时,这家公司市场的日销售
此文档下载收益归作者所有