欢迎来到天天文库
浏览记录
ID:46648298
大小:61.50 KB
页数:4页
时间:2019-11-26
《初中数学中考复习策略探究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、初中数学中考复习策略探究【关键词】初中数学屮考复习策略【中图分类号】G【文献标识码】A【文章编号】0450-9889(2014)02A-0118-02对学生而言,屮考是人生面临的第一次挑战,更是一次机遇。面对挑战和机遇,应如何应対呢?为了使初三数学复习落到实处,教师必须有条理地制订复习计划,让复习有计划、有步骤地进行。下面笔者通过四个阶段來谈谈自己是如何做好中考复习的。第一轮,梳理基础知识,构建初中数学知识网络。紧扣教材出题是这几年屮考命题的主要方向,全卷大约冇80%的内容是考查基础知识的。有的源于课木,有的是在课木原题的基础上,稍作改编或适当引屮拓展。复习中
2、要结合教材,引导学生系统地梳理教材的基础知识,构建教材的知识网络,对一些典型题型还要做到一题多解,达到举一反三、触类旁通的目的,做到以不变应万变,提高应试能力。基础知识的复习冇别于新授课和练习课,它不是简单的重复,而是要把知识网络化。例如,复习因式分解时,教师要从全局出发,归纳出把一个多项式分解因式,一般按下列步骤进行:①如果各项有公因式,那么先提取公因式。②如果各项没有公因式(或已提取公因式)则可尝试用公式法(平方差、完全平方公式及其变形)。③必须进行到每一个多项式都不能再分解为止。④有时要注意把某些共有的多项式看成整体。例如,在实数范围内分解因式:(1)x
3、4-9,(2)x2-3x-4o对于式子(1),有些学生分解到(x2+3)(x2-3)就不分解了。此时教师要引导学生思考:在实数范围内(x2-3)还可以分解吗?学生经过思考容易得出这个式子可以分解成(x2+3)(x+・)(x-对于式子(2),教师可引导学生通过解方程x2-3x-4=0得出xl二4,x2二T,于是分解得到原式二(x-4)(x+1)。因此,指导学生熟练学握各个知识点之间的整合,可以提高解题能力和综合应用知识的能力。第二轮,关注中考热点,解析压轴题解题策略。根据往年中考试卷命题的特点,结合收集到的最新中考信息,教师可以选择一些有代表性的题型进行专题训练
4、,寻找解题思路,提升学生的解题能力。如抛物线是初中数学中一个很重要的知识点,也是学好高中数学的基础。它就像-根轴,把很多垂要的初屮数学知识点连接起来。这类题型包括:①抛物线与面积。主要考查面积的转化方法、全等相似的运用。②抛物线与图形变换。将平移、轴对称与中心对称运用于二次函数的图象,是新课标中考对抛物线性质考察的一种新题型。③抛物线与方程。主要考查函数与方程的重要概念(内心、外心)的运用、相似三角形的运用以及韦达定理的运用。近些年,在全国各地的屮考试题屮,抛物线经常作为重点题和压轴题来全面考查学生的数学知识和学习潜力。女口,(2011?毕节地区)如图,在平面
5、直角坐标系中,抛物线y=ax2+bx+c(aHO)的图象经过M(1,0)和N(3,0)两点,口与Y轴交于D(0,3),直线1是抛物线的对称轴。(1)求该抛物线的解析式。(2)若过点A(-1,0)的直线AB与抛物线的对称轴和X轴围成的三和形面积为6,求此直线的解析式。(3)点P在抛物线的对称轴上,OP与直线AB和X轴都相切,求点P的坐标。这道题就涉及了几个知识点:①二次函数的解析式的求法;②一次函数与二次函数的综合应用;③相似三如形在抛物线中的运用。教师可以引导学生去思考:(1)根据图象经过M(1,0)和N(3,0)两点,且与Y轴交于D(0,3),可利用交点式求
6、出二次函数解析式;(2)根据直线AB与抛物线的对称轴和X轴围成的三角形面积为6,得出AC、BC的长,得出B点的处标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出△ABCs/XCBM,即可求出圆的半径,得出卩点的坐标。通过不断地强化训练,学生必定能熟悉并掌握这类问题的常用解题方法和策略。第三轮,重视模拟考试,提升学生的解题能力。模拟考试的目的是检验前期复习的效果和发现备考中的问题,为下一步复习调整指明方向。如果把中考比作一场篮球赛事的话,那么考前综合能力的训练就是这场赛事前的热身赛。这一阶段,我们要把学生的综合解题能力和解题策略放在首位。根据往
7、年的惯例,我们往往要集中一段时间來做综合能力测评。这主要体现在三方面训练:①系统、分类地做一些综合题。比如函数综合题、圆的综合计算题、开放探究题等。②精选几套模拟屮考题。模拟题的设计要有梯度,立足屮考又要高于屮考。教师不应该只追求题的数量,而应担负起教学与教研双重任务,根据教材应考的知识点,有针对性地精心选编考题。③适量做最新的中考真题。近年来,南宁市2012、2013年的中考命题有了新的创新题型,例如方案设计题、动态变换题、选自现实生活的应用题、开放题等。教师应引导学生注意找寻这类题目的解题方法,让学生认识、适应这类题型。在每一次的模拟考试过后,我们要关注学
8、生的考试时间是否能合理安排。如果学生把
此文档下载收益归作者所有