力学专业英语部分翻译(孟庆元)

力学专业英语部分翻译(孟庆元)

ID:46641401

大小:44.00 KB

页数:19页

时间:2019-11-26

力学专业英语部分翻译(孟庆元)_第1页
力学专业英语部分翻译(孟庆元)_第2页
力学专业英语部分翻译(孟庆元)_第3页
力学专业英语部分翻译(孟庆元)_第4页
力学专业英语部分翻译(孟庆元)_第5页
资源描述:

《力学专业英语部分翻译(孟庆元)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1、应力和应变应力和应变的概念可以通过考虑一个棱柱形杆的拉伸这样一个简单的方式来说明。一个棱柱形的杆是一个遍及它的长度方向和直轴都是恒定的横截面。在这个实例中,假设在杆的两端施加有轴向力F,并且在杆上产生了均匀的伸长或者拉紧。通过在杆上人工分割出一个垂直于其轴的截面mm,我们可以分离出杆的部分作为自由体【如图1(b)】。在左端施加有拉力P,在另一个端有一个代表杆上被移除部分作用在仍然保存的那部分的力。这些力是连续分布在横截面的,类似于静水压力在被淹没表面的连续分布。力的集度,也就是单位面积上的力,叫做应力,通常是用希腊字母,来表示。假设应力在横截面上是均匀分布的【如图1(b)】,我

2、们可以很容易的看出它的合力等于集度,乘以杆的横截面积A。而且,从图1所示的物体的平衡,我们可以看出它的合力与力P必须的大小相等,方向相反。因此,我们可以得出等式(1)可以作为棱柱形杆上均匀应力的方程。这个等式表明应力的单位是,力除以面积。当杆被力P拉伸时,如图所示,产生的应力是拉应力,如果力在方向是相反,使杆被压缩,它们就叫做压应力。使等式(1)成立的一个必要条件是,应力,必须是均匀分布在杆的横截面上。如果轴向力P作用在横截面的形心处,那么这个条件就实现了。当力P没有通过形心时,杆会发生弯曲,这就需要更复杂的分析。目前,我们假设所有的轴向力都是作用在横截面的形心处,除非有相反情况特

3、别说明。同样,除非另有说明,一般也假设物体的质量是忽略的,如我们讨论图1的杆一样。轴向力使杆产生的全部伸长量,用希腊字母δ表示【如图1(a)】,单位长度的伸长量,或者应变,可以用等式来决定。L是杆的总长。注意应变ε是一个无量纲的量。只要应变是在杆的长度方向均匀的,应变就可以从等式(2)中准确获得。如果杆处于拉伸状态,应变就是拉应变,代表材料的伸长或者延长如果杆处于受压状态,那么应变就是压应变,这也就意味着杆上临近的横截面是互相靠近的。当材料的应力和应变显示的是线性关系时,也就是线弹性。这对多数固体材料来说是极其重要的性质,包括多数金属,塑料,木材,混凝土和陶瓷。处于拉伸状态下,杆

4、的应力和应变间的线性关系可以用简单的等式来表示。E是比例常数,叫做材料的弹性模量。注意E和应力有同样的单位。在英国科学家托马斯·杨(1773~1829)研究杆的弹性行为之后,弹性模量有时也叫做杨氏模量。对大多数材料来说,压缩状态下的弹性模量与处于拉伸时的弹性模量的一样的。2、拉伸应力应变行为一个特殊材料中应力和应变的关系是通过拉伸测试来决定的。材料的试样通常是圆棒的形式,被安置在测试机上,承受拉力。当载荷增加时,测量棒上的力和棒的伸长量。力除以横截面积可以得出棒的应力,伸长量除以伸长发生方向的长度可以得出应变。通过这种方式,材料的完整应力应变图就可以得到。图1所示的是结构钢的应力应

5、变图的典型形状,轴向应变显示在水平轴,对应的应力以纵坐标表示为曲线OABCDE。从O点到A点,应力和应变之间是直接成比例的,图形也是线性的。过了A点,应力应变间的线性关系就不存在了,因此A点处的应力叫做比例极限。随着荷载的增加,应变比应力增加的更快,直到在B点,在拉应力没有明显增大的情况下,物体也发生了相当大的伸长。这种现象叫做材料的屈服,点B处的应力叫做屈服点或者屈服应力。在区域BC材料开始具有塑性,棒也开始塑性伸长,伸长量是在比例极限处伸长量的10或者15倍。在C点,材料开始应变硬化,并且进一步的阻力,阻止载荷的增加。这样,随着进一步的伸长,应变增加,并且在D点达到最大值,或者

6、极限应变。过了这一点,棒的拉伸伴随着载荷的减少,试样最后在图上E点断裂。在棒伸长期间,发生了侧面的收缩,导致棒的横截面积减小。这个现象在C点之前,对应力应变图没有影响,但是过了这一点,面积的减小对应力的计算值有明显的影响。棒就会发生明显的颈缩(如图2所示),并且如果颈处狭窄部分的实际横截面积被用于计算σ,将会发现真实的应力应变曲线是虚线CE。尽管在极限应力达到之后,棒上的总荷载有实际的减小,这个减小是由于面积的减少,而不是材料强度的减小。在失效点之前,材料实际经受了应力的增加。然而,为了多数实用目的,常规的应力应变曲线OABCDE是基于试样最初的横截面积,为设计目的提供了令人满意的

7、信息。图1的图形,画出来是为了表示应力应变曲线的一般特性。在应力应变曲线的最初区域,材料表现的既有弹性又有线性。钢材的应力应变图上的从O到A的区域就是很好的例子。紧接着大的塑性应变,明显屈服点的出现,对于在今天是很普通的结构化金属——钢材来说稍微有点独特。铝合金从线性到非线性区域是更渐渐的转变。在失效之前,钢和许多铝合金承受了更大的应变,所以被归类为易延展的。另一方面,脆性材料在很低的应变时就失效了。实例包括陶瓷,铸铁,混凝土,某些金属合金,和玻璃。3、圆棒的扭转让我

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。