椭圆综合题练习

椭圆综合题练习

ID:46585269

大小:213.10 KB

页数:6页

时间:2019-11-25

椭圆综合题练习_第1页
椭圆综合题练习_第2页
椭圆综合题练习_第3页
椭圆综合题练习_第4页
椭圆综合题练习_第5页
资源描述:

《椭圆综合题练习》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、椭圆综合题练习22xy1.设AB,分别为椭圆+=>>10()ab的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它22ab的右准线.(1)求椭圆的方程;(2)设P为右准线上不同于点()4,0的任意一点,直线APBP,分别与椭圆交于异于AB,的点MN,.y①若P()4,3,求BMBP⋅的值;②求证:点B在以MN为直径的圆内.P22xy解:(1)椭圆的方程为+=1M435A(2)①2Bx②由(1)得AB()()-2,0,2,0,设Mxy()00,NM点在椭圆上223=-yx()4①004又点M异于顶点A,

2、B,-<22x<,由P,A,B三点共线可得0æöç6y÷æöç6y÷ç0÷=ç0÷P4,,从而BM=-()x2,y,BP2,ç÷00ç÷çèøx+2÷çèøx+2÷006y22022⋅=-BMBP24x+=()x-43+y②000xx++22005将①代入②,化简得BMBP⋅=-()2x0220->x,⋅>BMBP0,则MBP为锐角,从而MBN为钝角0故点B在以MN为直径的圆内22xy2.已知椭圆+=1,过点F()1,0引两条互相垂直的直线

3、l,l与椭圆分别交于A,C与B,D1243点,求四边形ABCD面积S的取值范围.解法一(目标函数法)1当l,l中有一条直线的斜率不存在时,AC=4,BD=3,则SA=⋅=CBD6;12ABCD21当l,l斜率都存在时,不妨设l的斜率为k,则l的斜率为-,设Axy(),,Bxy(),12121122kìïyk=-xkïïïl的直线方程为ykx=-(1),联立íxy22,消去y,得到1ïï+=1ïïî432y22228k()34+-+kx8kxk41-20=,所以xx12+=2,D34+k2112+12k所以AC=´-22()

4、x+=x,C2312+4k2l1(由焦半径公式或弦长公式得到),同理可得OFx2+-æöç1÷B1212ççèøk÷÷12k2+12BD==l2æö1234k2+A34+-çç÷÷çèøk÷21112++12kk221212()1+k2所以SA=⋅=CBD⋅⋅=72⋅ABCD222223++4kk34()4334++kk22()2令tk=+1,则t>1,22tt11记Sf==⋅()t72=⋅72=⋅72=⋅72ABCD314112211111429()tt+-()t+t-æö12+---+ç÷2ç÷ttçèøt24÷2因为

5、1Î()0,1,--+Îæöçç114÷9æù12,49ú,所以ft()Îéê288,6ö÷;tèøççççt244÷÷èúê49÷÷øûëé288ù综上,四边形ABCD面积的取值范围为ê,6ú.êë49úû22æöxyç6÷3.如图,在平面直角坐标系xOy中,椭圆E:22+=>>10()ab的焦距为2,且过点çç2,÷÷.abçèø2÷÷(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,过点M垂直于PB的直线为m.求证:直线m

6、过定点,并求出定点坐标.23解:(1)由题意得,22c=,所以c=1,又+=1,22ab242221消去a可得,2530bb--=,解得b=3或b=-(舍去),y2222xy则a=4,所以椭圆E的方程为+=1.43(2)设Pxy(),11My1直线BP的斜率为k=2x1-2P2-x1直线m的斜率为k=,my12-x1A则直线m的方程为yy-=()x-20OxyB12-xyx=-1()2+yl0ym124-xy22()-x111=-+xyyx+2111222-x24()xy11-+41=+xyx()+2y1112222--x

7、x24()xx11-+-1232-x2-x1111=+xx=+=+()x1,yx()+2yyyy111111所以直线m过定点()-1,0.4.已知椭圆C中心在原点,焦点在x轴上,焦距为2,短轴长为23.(1)求椭圆C的标准方程;(2)若直线l:yk=+¹xmk(0)与椭圆交于不同的两点M,N(M,N不是椭圆的左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.解:(1)设椭圆的长半轴为a,短半轴为b,半焦距为c,则ìï22c=ïïìïa=2ïïí223b=,解得í,ïï222ïïîb=

8、3ïïîabc=+22xy∴椭圆C的标准方程为+=143ìïxy22ïïï+=1(2)由方程组í43消去y,得ïïïïîyk=+xm222()34+++kx8kmxm4-120=.22222由题意∆=-()84km()3+4k()41m-2>0,整理得34+->km0①28km41m-2设Mxy(),,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。