欢迎来到天天文库
浏览记录
ID:46105836
大小:39.50 KB
页数:3页
时间:2019-11-20
《高中数学解题能力的组成及培养策略》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高中数学解题能力的组成及培养策略高中数学解题能力的组成及培养策略摘要:数学解题能力是指能阅读、理解对问题进行陈述的材料;能综合运用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。它是逻辑思维能力、运算能力、空间想象能力等基本数学能力的综合体现。由于高考数学学科的命题原则是在考查基础知识的基础上,注重对数学思想和方法的考查,注重数学能力的考查,并强调了综合性。所以这就对考生分析和解决问题的能力提出了更高的要求,同时也使试卷的题型更新,更具有开放性。关键词:高中数学;解题能力;组成;培养策略中图分类号:G63
2、3.6文献标识码:A文章编号:1992-7711(2013)19-0095一、解题能力的组成1.读题能力读题是对条件和问题进行全面认识,对与条件和问题有关的全部情况进行分析研究,它是如何分析和解决问题的前提。读题能力主耍是指充分理解题意,把握住题目本质的能力;分析、发现隐含条件以及化简、转化已知和所求的能力。耍快捷、准确地解决问题,掌握题目的数形特点、能对条件或所求进行转化和发现隐含条件是至关重要的。评述:(I)题是一个常见的等比数列模型问题,即平均变化率类型,要解决该问题关键是理解题中“若每对轧辘的减薄率不超过r0"的含义;(II)题若通过合理联想,带钢从第k对
3、轧馄出口处两疵点间的距离和冷轧机出口处两疵点间的距离的关系,由于在此过程中,两疵点间的钢板体积相等,故是一等体积几何模型问题,可列式:1600•a(1-rO)k•宽度二Lk•a(1-rO)4•宽度。在该题的解答中,学生若没有一定的数学建模能力,正确解决此题实属不易。因此,建模能力是分析和解决问题能力不可或缺的一个组成部分。二、解题能力的培养策略1.重视通性通法教学,引导学牛概括、领悟常见的数学思想与方法数学思想较Z数学基础知识,有更高的层次和地位。它蕴涵在数学知识发生、发展和应用的过程中,它是一种数学意识,属于思维的范畴,用以对数学问题的认识、处理和解决。数学方法
4、是数学思想的具体体现,具有模式化与可操作性的特征,可以作为解题的具体手段。只有对数学思想与方法概扌舌了,才能在分析和解决问题时得心应手;只有领悟了数学思想与方法,书木的、别人的知识技巧才会变成口已的能力。每一种数学思想与方法都有它们适用的特定环境和依据的基木理论,如分类讨论思想可以分成:(1)由于概念木身需要分类的,像等比数列的求和公式中对公比的分类和直线方程中对斜率的分类等;(2)同解变形中需要分类的,如含参问题中对参数的讨论、解不等式组中解集的讨论等•乂如数学方法的选择,二次函数问题常用配方法,含参问题常用待定系数法等。因此,在数学课堂教学中应重视通性通法,淡
5、化特殊技巧,使学生认识一种“思想”或“方法”的个性,即认识一种数学思想或方法对于解决什么样的问题有效,从而培养和提高学生合理、正确地应用数学思想与方法分析和解决问题的能力。2.加强应用题的教学,提高学半的模式识别能力高考是注重能力的考试,特别是学生运用数学知识和方法分析问题和解决问题的能力,更是考查的重点,而高考中的应用题就着重考查这方面的能力,这从新课程版的《考试说明》与原来的《考试说明》中对能力的要求的区别可见一斑。(新课程版将“分析和解决问题的能力”改为“解决实际问题的能力”)数学是充满模式的,就解应用题而言,对其数学模式的识别是解决它的前提。由于高考考查的
6、都不是原始的实际问题,命题者对生产、生活中的原始问题的设计加工使每个应用题都有其数学模型。1.适当进行开放题和新型题的训练,拓宽学生的知识面要分析和解决问题。必先理解题意,才能进一步运用数学思想和方法解决问题。近年来,随着新技术革命的飞速发展,要求数学教育培养出更高数学素质、具有更强的创造能力的人才,这一点体现在高考上就是一些新背景题、开放题的出现,更加注重了能力的考查。因此,在高中数学教学中适当进行开放题和新型题的训练,拓宽学生的知识面是提高学生分析和解决问题能力的必要的补充。2.重视解题的回顾在数学解题过程中,解决问题以后,再回过头来对自己的解题活动加以回顾与
7、探讨、分析与研究,是非常必要的一个重要环节。这是数学解题过程的最后阶段,也是对提高学生分析和解决问题能力最有意义的阶段。解题教学的目的并不单纯为了求得问题的结果,真正的目的是为了提高学生分析和解决问题的能力,培养学生的创造精神,而这一教学冃的恰恰主要通过回顾解题的教学来实现。所以,在数学教学中要十分重视解题的回顾,与学生一起对解题的结果和解法进行细致的分析,对解题的主要思想、关键因素和同一类型问题的解法进行概括,可以帮助学牛从解题中总结出数学的基本思想和方法加以掌握,并将它们用到新的问题中去,成为以后分析和解决问题的有力武器。(作者单位:贵州省赫章县民族中学553
8、200)
此文档下载收益归作者所有