初中课件-八上数学12精品中学ppt课件.3角平分线的性质

初中课件-八上数学12精品中学ppt课件.3角平分线的性质

ID:45968140

大小:946.50 KB

页数:28页

时间:2019-11-19

初中课件-八上数学12精品中学ppt课件.3角平分线的性质_第1页
初中课件-八上数学12精品中学ppt课件.3角平分线的性质_第2页
初中课件-八上数学12精品中学ppt课件.3角平分线的性质_第3页
初中课件-八上数学12精品中学ppt课件.3角平分线的性质_第4页
初中课件-八上数学12精品中学ppt课件.3角平分线的性质_第5页
资源描述:

《初中课件-八上数学12精品中学ppt课件.3角平分线的性质》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、12.3角平分线的性质oBCA12复习提问1、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12下图中能表示点P到直线l的距离的是线段PC的长思考:复习提问2、点到直线距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。PABO我的长度如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?经过上面的探索,你能得到作已知角的平分线的方法吗?小组内互相交流一下吧!探究1---想一想证明:在

2、△ACD和△ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)∴△ACD≌△ACB(SSS)∴∠CAD=∠CAB(全等三角形的对应边相等)∴AC平分∠DAB(角平分线的定义)尺规作角的平分线观察领悟作法,探索思考证明方法:ABOMNC画法:1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N.2.分别以M,N为圆心.大于1/2MN的长为半径作弧.两弧在∠AOB的内部交于C.3.作射线OC.射线OC即为所求.CABMNC为什么OC是角平分线呢?O想一想:已知:OM=ON,MC=NC。求证:OC平分∠AOB。证明:在△OMC和

3、△ONC中,OM=ON,MC=NC,OC=OC,∴△OMC≌△ONC(SSS)∴∠MOC=∠NOC即:OC平分∠AOB1〉平分平角∠AOB2〉通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?3〉结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。ABOCD探究角平分线的性质(1)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?(2)结论:角的平分线上的点到角的两边的距离相等.已知:如图,OC是∠AO

4、B的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D,E。求证:PD=PE证明:∵PD⊥OA,PE⊥OB(已知)∴∠PDO=∠PEO=90(垂直的定义)在△PDO和△PEO中∴PD=PE(全等三角形的对应边相等)∠PDO=∠PEO∠AOC=∠BOCOP=OP∴△PDO≌△PEO(AAS)角的平分线上的点到这个角的两边的距离相等。DPEAOBC证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证的途径,写出证明过程。角平分线上的点到角的两边的距离相等你能

5、用文字语言叙述一下发现的结论吗?说一说AOBPED用符号语言表示为:∵∠1=∠2PD⊥OA,PE⊥OB∴PD=PE(角的平分线上的点到角的两边的距离相等)推理的理由有三个,必须写完全,不能少了任何一个。角平分线的性质角的平分线上的点到角的两边的距离相等。BADOPEC定理应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离。定理的作用:证明线段相等。1、如图,∵AD平分∠BAC(已知)∴=,()在角的平分线上的点到这个角的两边的距离相等。BDCD(×)练习2、如图,∵DC⊥AC,DB⊥AB(已知)∴=,()在角的平分线上

6、的点到这个角的两边的距离相等。BDCD(×)3、∵AD平分∠BAC,DC⊥AC,DB⊥AB(已知)∴=,()DBDC在角的平分线上的点到这个角的两边的距离相等。√不必再证全等4、如图,∵OC是∠AOB的平分线,又________________∴PD=PE()PD⊥OA,PE⊥OBBOACDPE角的平分线上的点到角的两边的距离相等已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.BAEDCF证明:∵DE⊥AB,DF⊥AC∴∠BED=∠CFD=90º∵AD平分∠BAC,∴D

7、E=DF【角平分线上的点到两边的距离相等】又∵在Rt⊿BDE和Rt⊿CDF中BD=CDDE=DF∴Rt⊿BDE≌Rt⊿CDF(HL)∴EB=FC在△ABC中,∠C=90°,AD为∠BAC的平分线,DE⊥AB,BC=7,DE=3.求BD的长。EDCBA3.已知△ABC中,∠C=900,AD平分∠CAB,且BC=8,BD=5,求点D到AB的距离是多少?ABCDE你会吗?如图,在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EBACDEBF1、如图,△ABC的角平分线BM,CN相交于点P,求证

8、:点P到三边AB、BC、CA的距离相等ABCPMNDEF证明:过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F∵BM为△ABC的角平分线∴PD=PE同理,PE=PF.∴PD

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。