2011年数学高考分类汇编解答题(理)02——概率与统计

2011年数学高考分类汇编解答题(理)02——概率与统计

ID:4596328

大小:581.00 KB

页数:13页

时间:2017-12-02

2011年数学高考分类汇编解答题(理)02——概率与统计_第1页
2011年数学高考分类汇编解答题(理)02——概率与统计_第2页
2011年数学高考分类汇编解答题(理)02——概率与统计_第3页
2011年数学高考分类汇编解答题(理)02——概率与统计_第4页
2011年数学高考分类汇编解答题(理)02——概率与统计_第5页
资源描述:

《2011年数学高考分类汇编解答题(理)02——概率与统计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2011年数学各地高考分类汇编解答题(理)02概率与统计1.(2011天津卷理)16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望.【解析】16.本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列

2、、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.满分13分.(I)(i)解:设“在1次游戏中摸出i个白球”为事件则(ii)解:设“在1次游戏中获奖”为事件B,则,又且A2,A3互斥,所以(II)解:由题意可知X的所有可能取值为0,1,2.所以X的分布列是X012PX的数学期望2.(2011北京理)17.本小题共13分以下茎叶图记录了甲、乙两组各四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。02概率与统计(理)第13页(13)天津蓟县擂鼓台中学张友清2011年数

3、学各地高考分类汇编解答题(理)02(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。(注:方差,其中为,,……的平均数)【解析】(17)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果

4、,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P(Y=17)=同理可得所以随机变量Y的分布列为:Y1718192021PEY=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×+18×+19×+20×+21×=193.(2011辽宁卷理)19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和

5、品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲40339739040438840041240602概率与统计(理)第13页(13)天津蓟县擂鼓台中学张友清2011年数学各地高考分类汇编解答题(理)02品种乙41940

6、3412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据的的样本方差,其中为样本平均数.【解析】19.解:(I)X可能的取值为0,1,2,3,4,且即X的分布列为………………4分X的数学期望为………………6分(II)品种甲的每公顷产量的样本平均数和样本方差分别为:………………8分品种乙的每公顷产量的样本平均数和样本方差分别为:………………10分02概率与统计(理)第13页(13)天津蓟县擂鼓台中学张友清2011年数学各地高考分类

7、汇编解答题(理)02由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.4.(全国大纲卷理)8.(本小题满分12分)(注意:在试题卷上作答无效)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。【解析】18.解:记A表示事件:该地的1位车主购买甲种保险

8、;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;(I)…………3分…………6分(II),即X服从二项分布,…………10分所以期望…………12分5.(全国新课标理)(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。