资源描述:
《(福建专用)2019高考数学一轮复习 课时规范练45 点与直线、两条直线的位置关系 理 新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时规范练45 点与直线、两条直线的位置关系一、基础巩固组1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( )A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=02.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2017广东揭阳一模)若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为( )A.7B.0或7C.0D.44.(2017浙江温州模拟)直线l1:kx+(1-k)y
2、-3=0和l2:(k-1)x+(2k+3)y-2=0互相垂直,则k=( )A.-3或-1B.3或1C.-3或1D.-1或35.已知平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为( )A.3x-y-20=0B.3x-y-10=0C.3x-y-9=0D.3x-y-12=06.(2017广西南宁模拟)直线x-2y+1=0关于直线x=1对称的直线方程是( )A.x+2y-1=0B.2x+y-1=0C.2x+y-3=0D.x+2y-3=07.若动点A,B分别在直
3、线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为( )A.3B.2C.3D.48.如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到点P,则光线所经过的路程是( )A.2B.6C.3D.2〚导学号21500568〛9.经过两条直线2x-3y+3=0,x-y+2=0的交点,且与直线x-3y-1=0平行的直线的一般式方程为 . 10.(2017宁夏银川模拟)点P(2,1)到直线l:mx-y-3=0
4、(m∈R)的最大距离是 . 11.已知点A(1,3)关于直线y=kx+b对称的点是B(-2,1),则直线y=kx+b在x轴上的截距是 . 12.(2017江西八校联考)已知点P(x,y)到A(0,4)和B(-2,0)的距离相等,则2x+4y的最小值为 . 二、综合提升组13.若向量a=(k+2,1)与向量b=(-b,1)共线,则直线y=kx+b必经过定点( )A.(1,-2)B.(1,2)C.(-1,2)D.(-1,-2)14.(2017河北武邑中学一模)若m∈R,则“log6m=-1”是“直线l1:x+2m
5、y-1=0与l2:(3m-1)x-my-1=0平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )A.-或-B.-或-C.-或-D.-或-〚导学号21500569〛16.(2017江苏淮安调研)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为 . 三、创新应用组17.(2017浙江杭州月考)
6、已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是( )A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k、P1、P2,使之有无穷多解〚导学号21500570〛18.已知点A(3,1),在直线y=x和y=0上分别找一点M和N,使△AMN的周长最短,则最短周长为( )A.4B.2C.2D.2课时规范练45 点与直线、两条直线的位置关系1.A 设直线方程为x-2y+c=0(c≠-2),又经过(1,
7、0),故c=-1,所求方程为x-2y-1=0.2.C 直线x+y=0和直线x-ay=0互相垂直⇔1+1×(-a)=0,故选C.3.B ∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或m=7,经检验都符合题意.故选B.4.C 若1-k=0,即k=1,直线l1:x=3,l2:y=,显然两直线垂直.若k≠1,直线l1,l2的斜率分别为k1=,k2=由k1k2=-1,得k=-3.综上k=1或k=-3,故选C.5.A 设AC的中点为O,则O设B(x,y)关于点O的对称点为(x0,y0),即D(
8、x0,y0),则因为点D在直线3x-y+1=0上,所以3x0-y0+1=0,得点B的轨迹方程为3x-y-20=0.6.D 设所求直线上任一点(x,y),则它关于直线x=1的对称点(2-x,y)在直线x-2y+1=0上,即