欢迎来到天天文库
浏览记录
ID:45847317
大小:328.00 KB
页数:19页
时间:2019-11-18
《中考数学真题分类汇编第一期专题19相交线与平行线试题含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相交线与平行线一、选择题1.(xx•山东枣庄•3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2.(xx•山东淄博•4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥B
2、C交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为( )A.4B.6C.D.8【考点】KO:含30度角的直角三角形;JA:平行线的性质;KJ:等腰三角形的判定与性质.【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMB=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN
3、+NC=3,∴BC=6,故选:B.【点评】本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.3.(xx•山东滨州•3分)如图,直线AB∥CD,则下列结论正确的是( )A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D
4、.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.(xx•山东菏泽•3分)如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是( )A.45°B.30°C.15°D.10°【考点】KW:等腰直角三角形;JA:平行线的性质.【分析】根据a∥b,得到∠1+∠3+∠4+∠2=180°,将∠1=30°,∠3=45°,∠4=90°代入即可求出∠2的度数.【解答】解:如图.∵a∥b,∴∠1+∠3+∠4+∠2=180°,∵∠1=30°,∠3=45°,∠4=90°,∴∠2=15°
5、,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.(xx·湖北省孝感·3分)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为( )A.42°B.50°C.60°D.68°【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.(xx·山东
6、潍坊·3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A.45°B.60°C.75°D.82.5°【分析】直接利用平行线的性质结合已知角得出答案.【解答】解:作直线l平行于直角三角板的斜边,可得:∠2=∠3=45°,∠3=∠4=30°,故∠1的度数是:45°+30°=75°.故选:C.【点评】此题主要考查了平行线的性质,正确作出辅助线是解题关键.7.(xx·山东临沂·3分)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是( )A.42°B.64
7、°C.74°D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.8.(xx·山东泰安·3分)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为( )A.14°B.16°C.90°﹣αD.α﹣44°【分析】依据平行线的性质,即可得
8、到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°.【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=1
此文档下载收益归作者所有