2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5

2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5

ID:45805587

大小:144.30 KB

页数:4页

时间:2019-11-17

2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5_第1页
2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5_第2页
2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5_第3页
2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5_第4页
资源描述:

《2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学第二章《解三角形》之三角形中的几何计算教案(二)北师大版必修5一、教学目标:1、会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;2、搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;3、理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;4、通过解三角形的应用的学习,提高解决实际问题的能力。二、教学重点:实际问题向数学问题的转化及解斜三角形的方法教学难点:实际问题向数学问题转化思路的确定三、教学方法:启发引导式四、教学过程:(一).复习回顾:1

2、.正弦定理:2.余弦定理:,3.解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力下面,我们将举例来说明解斜三角形在实际中的一些应用(二)、探析范例:例1:某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向,以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去

3、营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间分析:设舰艇从A处靠近渔船所用的时间为xh,则利用余弦定理建立方程来解决较好,因为如图中的∠1,∠2可以求出,而AC已知,BC、AB均可用x表示,故可看成是一个已知两边夹角求第三边问题解:设舰艇从A处靠近渔船所用的时间为xh,则AB=21x海里,BC=9x海里,AC=10海里,∠ACB=∠1+∠2=45°+(180°-105°)=120°,根据余弦定理,可得AB2=AC2+BC2-2AC·BC·cos120°得(21x)2=102+(9x)2-2×10×9xcos120°,即36x

4、2-9x2×10=0解得x1=,x2=-(舍去)∴AB=21x=14,BC=9x=6再由余弦定理可得cos∠BAC=∴∠BAC=21°47′,45°+21°47′=66°47′所以舰艇方位角为66°47′,小时即40分钟答:舰艇应以66°47′的方位角方向航行,靠近渔船则需要40分钟评述:解好本题需明确“方位角”这一概念,方位角是指由正北方向顺时针旋转到目标方向线的水平角,其范围是(0°,360°)在利用余弦定理建立方程求出x后,所求舰艇方位角就转化为一个已知三边求角的问题,故仍然利余弦定理例2:如图所示,已知半圆的直径AB=2

5、,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值分析:要求四边形OPDC面积的最大值,这首先需要建立一个面积函数,问题是选谁作为自变量,注意到动点P在半圆上运动与∠POB大小变化之间的联系,自然引入∠POB=θ作为自变量建立函数关系四边形OPDC可以分成△OPC与等边△PDC,S△OPC可用·OP·OC·sinθ表示,而等边△PDC的面积关键在于边长求解,而边长PC可以在△POC中利用余弦定理表示,至于面积最值的获得,则通过三角函数知识解决解:设

6、∠POB=θ,四边形面积为y,则在△POC中,由余弦定理得:PC2=OP2+OC2-2OP·OCcosθ=5-4cosθ∴y=S△OPC+S△PCD=+(5-4cosθ)=2sin(θ-)+∴当θ-=即θ=时,ymax=2+评述:本题中余弦定理为表示△PCD的面积,从而为表示四边形OPDC面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性另外,在求三角函数最值时,涉及到两角和正弦公式sin(α+β)=sinαcosβ+cosαsinβ的构造及逆用,应要求学生予以重视(

7、三).随堂练习:1.已知两地的距离为两地的距离为,现测得,则两地的距离为()A.B.C.D.2在△ABC中,已知角B=45°,D是BC边上一点,AD=5,AC=7,DC=3,求AB解:在△ADC中,cosC=又0<C<180°,∴sinC=在△ABC中,∴AB=评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用2、如图,在四边形ABCD中,已知AD^CD,AD=10,AB=14,ÐBDA=60°,ÐBCD=135°求BC的长。解:在△ABD中,设BD=x则即整理得:解之:(舍去)由余弦定理:∴(四

8、).小结:通过本节学习,要求大家在了解解斜三角形知识在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力(五)、课后作业:课本

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。