欢迎来到天天文库
浏览记录
ID:45802129
大小:3.19 MB
页数:19页
时间:2019-11-17
《 湖南省长沙市长郡中学2019届高三上学期第三次调研考试数学(文科)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、长郡中学2019届高三第三次调研考试数学(文)试卷一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,集合,全集为U=R,则为A.B.C.D.【答案】D【解析】【分析】化简集合A,B,然后求出A的补集,最后求交集即可得到结果.【详解】∵,∴又∴故选:D【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注
2、意端点值的取舍.2.设复数的共轭复数为,且满足,复数对应点在直线上,则复数(i为虚数单位)所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】设复数z=a+bi(a,b∈R),由题意可得,从而得到,利用除法运算可得,从而得到所在的象限.【详解】设复数z=a+bi(a,b∈R)则a-bi∴,,∴∴∴复数(i为虚数单位)所在的象限为第三象限故选:C【点睛】复数的运算,难点是乘除法法则,设,则,.3.已知下列两个命题p1:存在正数a,使函数在R上为偶函数;p2:函数无零点,则在命题和中,真命题是A.q1,
3、q4B.q2,q3C.q1,q3D.q2,q4【答案】A【解析】【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【详解】命题:当a=1时,在R上为偶函数,故命题为真命题;命题:,显然是函数的零点,故命题为假命题,∴为假命题,为真命题,∴为真命题,为假命题,为假命题,为真命题,故选:A【点睛】本题考查了复合命题真假的判定,考查函数的奇偶性问题以及三角函数的零点问题,是一道基础题.4.已知点A(1,0),点B(x,y)(x,y∈R),若,则的概率为A.B.C.D.【答案】D【解析】【分析】本题是几何概型的求法,首先分别求出
4、事件对应区域面积,利用面积比求概率.【详解】∵点A(1,0),点B(x,y)(x,y∈R),∴表示以(1,0)为圆心,1为半径的圆面(包括边界),∵,∴y≥x,如图所示:由几何概型的公式得到故选:D【点睛】几何概型概率公式的应用:(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数
5、组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.5.已知等比数列满足,且成等差数列.若数列满足(n∈N*),且,则数列的通项公式A.B.C.D.【答案】B【解析】【分析】利用题意可得,再利用累加法即可得到通项公式.【详解】设等比数列的公比为,∵等比数列满足,∴,∴,又成等差数列∴,即,∴,∴,∴∴.故选:B【点睛】本题考查了由递推关系求通项,常用方法有:累加法,累乘法,构造等比数列法,取倒数法,取对数法等等,本题考查的是构造新等比数列的方法,注意新数列的首项与原数列首项的关系.6.已知x∈R,y∈R,且x,y满足,若的
6、最大值为a,最小值为b,则的值为A.1B.3C.5D.8【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图,化目标函数为y=x+,由图可知,当直线y=x+过(-2,0)时,直线在y轴上的截距最小,z有最小值为2;当直线y=x+过(1,3)时,直线在y轴上的截距最大,z有最大值为7.∴a=7,b=﹣2,则a+b=5.故选:C.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无
7、误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.7.沈老师告知高三文数周考的附加题只有6名同学A,B,C,D,E,F尝试做了,并且这6人中只有1人答对了.同学甲猜测:D或E答对了;同学乙猜测:C不可能答对;同学丙猜测:A,B,F当中必有1人答对了;同学丁猜测:D,E,F都不可能答对.若甲、乙、丙、丁中只有1人猜对,则此人是A.甲B.乙C.丙D.丁【答案】D【解析】【分析】分别假设甲对、乙对、丙对,丁对,由已知条件进行推理
8、,由此能求出结果.【详解】若甲猜对,则乙也猜对,与题意不符,故甲猜错;若乙猜对,则丙猜对,与题意不符,故乙猜错;若丙猜对,则乙猜对,与题意不符,故丙猜错;∵甲、乙、丙、丁四人中只有1人猜对,∴丁猜对.故选:D.【点睛】本题考查推理能力
此文档下载收益归作者所有