与圆有关的比例线段(切割线定理)

与圆有关的比例线段(切割线定理)

ID:45779931

大小:720.50 KB

页数:25页

时间:2019-11-17

与圆有关的比例线段(切割线定理)_第1页
与圆有关的比例线段(切割线定理)_第2页
与圆有关的比例线段(切割线定理)_第3页
与圆有关的比例线段(切割线定理)_第4页
与圆有关的比例线段(切割线定理)_第5页
资源描述:

《与圆有关的比例线段(切割线定理)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、弦切角定理:弦切角等于它所夹的弧所对的圆周角.圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.圆心角定理:圆心角的度数等于它所对弧的度数.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;反之,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;反之,90°的圆周角所对的弦是直径.复习回顾——相交弦、切割线、切线长定理五与圆有关的比例线段一、下面我们首先沿用从特殊到一般的思路,讨论与圆有关的相交弦的问题.探究1:如图1,AB是⊙O的直径,CD⊥AB,AB与CD相交于P,线段PA、PB、PC、PD之间有什么关系?OBDACP图1证明:连

2、接AD、BC.则由圆周角定理的推论可得:∠A=∠C.∴Rt△APD∽Rt△CPB.探究2:将图1中的AB向上(或向下)平移,使AB不再是直径(如图2),结论(1)还成立吗?OBDACP图2OBDACP图1PA·PB=PC·PD……(1)证明:连接AD、BC.则由圆周角定理的推论可得:∠A=∠C.∴Rt△APD∽Rt△CPB.OBDACP图1PA·PB=PC·PD……(1)证明:连接AD、BC.则由圆周角定理的推论可得:∠A=∠C.∴△APD∽△CPB.探究3:上面讨论了CD⊥AB的情形.进一步地,如果CD与AB不垂直,如图3,AB、CD是圆内的任意两条相交弦,结论(

3、1)还成立吗?OBDACP图3OBDACP图2PA·PB=PC·PD……(2)PA·PB=PC·PD……(3)综上所述,不论AB、CD具有什么样的位置,都有结论(1)成立!相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.OBDACP几何语言:AB、CD是圆内的任意两条相交弦,交点为P,∴PA•PB=PC•PD.上面通过考察相交弦交角变化中有关线段的关系,得出相交弦定理.下面从新的角度考察与圆有关的比例线段.探究4:使圆的两条弦的交点从圆内(图3)运动到圆上(图4),再到圆外(图5),结论(1)还成立吗?OBDACP图3OBA(C,P)D图4OBDACP

4、图5当点P在圆上,PA=PC=0,所以PA•PB=PC•PD=0仍成立.当点P在圆外,连接AD、BC,容易证明:△PAD∽△PCB,所以PA:PC=PD:PB,即PA•PB=PC•PD仍成立.如图,已知点P为⊙O外一点,割线PBA、PDC分别交⊙O于A、B和C、D.求证:PA∙PB=PC∙PD.证法2:连接AC、BD,∵四边形ABDC为⊙O的内接四边形,∴∠PDB=∠A,又∠P=∠P,∴△PBD∽△PCA.∴PD:PA=PB:PC.∴PA∙PB=PC∙PD.割线定理:从圆外一点引圆的两条割线,这一点到每一条割线与圆的交点的两条线段长的乘积相等.应用格式(几何语言描述

5、):∵PAB,PCD是⊙O的割线,∴PA∙PB=PC∙PD.OCPADB点P从圆内移动到圆外PA∙PB=PC∙PDOBDACP图3PA∙PB=PC∙PD图5OCPADBOA(B)PCD使割线PA绕P点运动到切线的位置,是否还有PA∙PB=PC∙PD?证明:连接AC、AD,同样可以证明△PAD∽△PCA,所以PA:PC=PD:PA,即PA2=PC•PD仍成立.如图,已知点P为⊙O外一点,PA切⊙O于点A,割线PCD交⊙O于C、D.求证:PA2=PC∙PD.证明:连接AC、AD,∵PA切⊙O于点A,∴∠D=∠PAC.又∠P=∠P,∴△PAC∽△PDA.∴PA:PD=PC

6、:PA.∴PA2=PC∙PD.切割线定理:从圆外一点引圆的切线和条割线,切线长是这点到割线与圆的交点的两条线段长的比例中项.应用格式(几何语言描述):∵PA是⊙O的切线,PCD是⊙O的割线,∴PA²=PC∙PD.ODPCA探究5:使圆的割线PD绕点P运动到切线位置,可以得出什么结论?点P从圆内移动到圆外.相交弦定理PA∙PB=PC∙PDOBDACP图3割线定理PA∙PB=PC∙PD图5OCPADB使割线PA绕P点运动到切线的位置.OA(B)PCD切割线定理PA2=PC•PD使割线PC绕P点也运动到切线的位置.切线长定理PA=PC,∠APO=∠CPOOA(B)PC(D

7、)思考:从这几个定理的结论里大家能发现什么共同点?1.结论都为乘积式;2.几条线段都是从同一点出发;3.都是通过三角形相似来证明(都隐含着三角形相似).PC切⊙O于点C=>PA∙PB=PC²切割线定理OBPCA割线PCD、PAB交⊙O于点C、D和A、B=>PA∙PB=PC∙PD割线定理OBCADPAB交CD于点P=>PA∙PB=PC∙PD相交弦定理OBPCADPA、PC分别切⊙O于点A、C=>PA=PC,∠APO=∠CPO切线长定理OA(B)PC(D)另外,从全等角度可以得到:2.联系直角三角形中的射影定理,你还能想到什么?ADCBC′O说明了“射影定理”是“相

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。