资源描述:
《2019届高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 第1节 分类加法计数原理与分步乘法计数原理练习 理 新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十章第1节分类加法计数原理与分步乘法计数原理[基础训练组]1.(导学号14577895)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16C.13D.10解析:C [分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.故选C.]2.(导学号14577896)如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可
2、走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为( )A.6,8B.6,6C.5,2D.6,2解析:A [从甲地经乙地到丙地,分两步:第1步,从甲地到乙地,有3条公路;第2步,从乙地到丙地,有2条公路.根据分步乘法计数原理,有3×2=6种走法.从甲地到丙地,分两类:第1类,从甲地经乙地到丙地,有6种走法;第2类,从甲地不经过乙地到丙地,有2条水路,即有2种走法.根据分类加法计数原理,有6+2=8种走法.故选A.]3.(导学号14577897)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有( )
3、A.16种B.18种C.37种D.48种解析:C [三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.故选C.]4.(导学号14577898)如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有( )A.9种B.11种C.13种D.15种解析:C [按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第
4、3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.故选C.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.]5.(导学号14577899)如图所示的五个区域中,中心区域是一幅图画,现在要求在其余四个区域中涂色,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( )A.64B.72C.84D.96解析:C [分成两类:A和C同色时有4×3×3=36种;A和C不同色时有4×3×2×2=48种,所以一共有36+48=84种.]
5、6.(导学号14577900)(2018·铜川市模拟)从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是 ________ .解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故所求奇数的个数为3×3×2=18.答案:187.(导学号14577901)三边长均为正整数,且最大边长为11的三角形的个数是 ________ .解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,…,11,有11个三角形;当y取10时,x可取
6、2,3,…,10,有9个三角形;…;当y取6时,x只能取6,只有1个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.答案:368.(导学号14577902)已知集合M=,集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x7、,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种).10.(导学号14577904)现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不