义务教育数学课程标准解读之目标篇

义务教育数学课程标准解读之目标篇

ID:45717070

大小:231.00 KB

页数:86页

时间:2019-11-16

义务教育数学课程标准解读之目标篇_第1页
义务教育数学课程标准解读之目标篇_第2页
义务教育数学课程标准解读之目标篇_第3页
义务教育数学课程标准解读之目标篇_第4页
义务教育数学课程标准解读之目标篇_第5页
资源描述:

《义务教育数学课程标准解读之目标篇》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《义务教育数学课程标准(2011版)》解读之课程目标篇2012.6主要内容“课标”对“课程目标”表述的思路义务教育数学课程的总目标义务教育数学课程的具体目标义务教育数学课程的学段目标“课标”对“课程目标”表述的思路关键词:“总目标”、“具体目标”、“学段目标”先总体,后具体,再到学段的细节,逐渐展开,希望使读者层层深入地阅读,既能够提纲携领,又能够多角度地、全面深入地理解并掌握“课程目标”。数学课程的具体目标按照知识技能、数学思考、问题解决、情感态度这四个方面展开,它们也是《基础教育课程改革纲要(试行)》(下面简称为《纲要》)中“知识与技能”、“过

2、程与方法”、“情感态度与价值观”三维目标在数学课程中的具体体现。教育部门的领导、数学教材的编写者、数学教师都可以从“课程目标”的表述中总体地、全面地、精炼地了解:义务教育阶段数学课程设置的目的是什么;数学教学活动有哪些教育意义;数学课堂应当是怎样的;数学学习将使学生有什么收获。“课标”是就义务教育阶段的数学课程制定的课程目标,所以在符合《纲要》中三维目标的同时,还要结合数学学科的特点,结合义务教育阶段学生的特点,把上述三维目标具体化。综上:“课标”中的课程目标是一个具有层次、有结构的目标体系。“课标”对“课程目标”表述的思路义务教育数学课程的总目标

3、《实验稿》《标准》(2011)获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学

4、好数学的信心。了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。义务教育数学课程的总目标《标准20011版》中三条总目标分别对应获得“四基”,增强能力,培养科学态度。获得四基:增强能力:体现在让学生经历整个问题解决的全过程。科学态度:价值,兴趣,信心,习惯。一、获得“四基”1.因为培养创新精神的需要:一个人要具有创新精神,可能需要三个基本要素:创新意识、创新能力和创新机遇。其中,创新意识和创新能力的形成,不仅仅需要必要的知

5、识和技能的积累,更需要思想方法、活动经验的积累。也就是说,要创新,需要具备知识技能、需要掌握思想方法、需要积累有关经验,几方面缺一不可。正如史宁中教授所说:“创新能力依赖于三方面:知识的掌握、思维的训练、经验的积累,三方面同等重要。”“双基”为什么要发展为“四基”?一、获得“四基”“双基”为什么要发展为“四基”?2.因为“双基”仅仅涉及上述三维目标中的一个目标——“知识与技能”。新增加的两条则还涉及三维目标中的另外两个目标——“过程与方法”和“情感态度与价值观”。3.因为某些教师片面地理解“双基”,往往在实施中“以本为本”,见物不见人;而教学必须以

6、人为本,人的因素第一,新增加的“数学思想”和“活动经验”就直接与人相关,也符合“素质教育”的理念。4.因为仅有“双基”还难以培养创新性人才,“双基”是培养创新性人才的一个基础,但创新性人才不能仅靠熟练掌握已有的知识和技能来培养,思维训练和积累经验等也十分重要,所以新增加了两条。(一)获得数学的基础知识和基本技能关键词:与时俱进走出“10亿件衬衫换1架波音”的尴尬(缺乏创新)旧双基:数学的基本概念、基本公式、基本运算、基本性质、基本法则、基本程式、基本定理、基本作图、基本推理、基本表述、基本方法、基本操作、基本技巧,等等。新双基:对于过去数学“双基”

7、的某些内容,如繁杂的计算、细枝末节的证明技巧等,需要有所删减;而对于估算、算法、数感、符号感、收集和处理数据、概率初步、统计初步、数学建模初步等,又要有所增加。(知识爆炸时代、信息时代)(二)获得数学的基本思想数学思想是数学科学发生、发展的根本,是探索研究数学所依赖的基础,也是数学课程教学的精髓。数学思想的内涵十分丰富,也有学者通俗地把“数学思想”说成“将具体的数学知识都忘掉以后剩下的东西”作为知识的数学出校门不到两年就忘了,唯有深深铭记在头脑中的数学的精神、数学的思想、研究的方法和着眼点等,这些随时随地地发生作用,使人终身受益。(米山国藏)例如:

8、从数学角度看问题的出发点,把客观事物简化和量化的思想,周到地思考问题和严密地进行推理,以及建立数学模型的思想,合理地运筹帷

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。