2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理

2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理

ID:45697547

大小:231.00 KB

页数:17页

时间:2019-11-16

2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理_第1页
2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理_第2页
2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理_第3页
2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理_第4页
2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理_第5页
资源描述:

《2019年高考数学二轮复习 专题训练四 第3讲 推理与证明 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高考数学二轮复习专题训练四第3讲推理与证明理考情解读 1.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.1.合情推理(1)归纳推理①归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②归纳推理的思维过程如下:→→(2)类比推理①类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②类比推理的思维过程如

2、下:→→2.演绎推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.3.直接证明(1)综合法用P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论,则综合法可用框图

3、表示为:→→→…→(2)分析法用Q表示要证明的结论,则分析法可用框图表示为:→→→…→4.间接证明反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p,则q”的过程可以用如图所示的框图表示.→→→5.数学归纳法数学归纳法证明的步骤:(1)证明当n取第一个值n0(n0∈N*)时命题成立.(2)假设n=k(k∈N*,且k≥n0)时命题成立,证明n=k+1时命题也成立.由(1)(2)可知,对任意n≥n0,且n∈N*时,命题都成立.热点一 归纳推理例1 (1)有菱形纹的正

4、六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是(  )A.26B.31C.32D.36(2)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是(  )A.48,49B.62,63C.75,76D.84,85思维启迪 (1)根据三个图案中的正六边形个数寻求规律;(2)靠窗口的座位号码能被5整除或者被5除余1.答案 (1)B (2)D解析 (1)有菱形纹的正六边形个数如下表:图案123…个数61116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等

5、差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.(2)由已知图形中座位的排列顺序,可得:被5除余1的数和能被5整除的座位号临窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号,只有D符合条件.思维升华 归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察——归纳——猜想——证明”,解题的关键在于正确的归纳猜想. (1)四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号

6、位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…这样交替进行下去,那么第202次互换座位后,小兔坐在第______号座位上.1鼠2猴3兔4猫 开始1兔2猫3鼠4猴第一次1猫2兔3猴4鼠第二次1猴2鼠3猫4兔第三次A.1B.2C.3D.4(2)已知f(n)=1+++…+(n∈N*),经计算得f(4)>2,f(8)>,f(16)>3,f(32)>,则有________________.答案 (1)B (2)f(2n)>(n≥2,n∈N*)解析 (1)考虑小兔所坐的座位号,第一次坐在1号位上,第二次坐在2号位上,第三次坐在4号位上,第四次坐在3号位上,第五次

7、坐在1号位上,因此小兔的座位数更换次数以4为周期,因为202=50×4+2,因此第202次互换后,小兔所在的座位号与小兔第二次互换座位号所在的座位号相同,因此小兔坐在2号位上,故选B.(2)由题意得f(22)>,f(23)>,f(24)>,f(25)>,所以当n≥2时,有f(2n)>.故填f(2n)>(n≥2,n∈N*).热点二 类比推理例2 (1)在平面几何中有如下结论:若正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=.推广到空间几何可以得到类似结论:若正四面体ABCD的内切球体积为V1,外接球体积为V2,则=__

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。