相关性分析(相关系数)

相关性分析(相关系数)

ID:45697512

大小:41.00 KB

页数:3页

时间:2019-11-16

相关性分析(相关系数)_第1页
相关性分析(相关系数)_第2页
相关性分析(相关系数)_第3页
资源描述:

《相关性分析(相关系数)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本.相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。γ>0为正相关,γ<0为负相关。γ=0表示不相关;γ的绝对值越大,相关程度越高。两个现象之间的相关程度,一般划分为四级:如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为

2、完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。相关系数的计算公式为<见参考资料>.其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,为因变量数列的标志值;■为因变量数列的平均值。为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>.其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以

3、用一种简捷的方法计算相关系数,其公式<见参考资料>.使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。简单相关系数:又叫相关系数或线性相关系数。它一般用字母r表示。它是用来度量定量变量间的线性相关关系。复相关系数:又叫多重相关系数复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。偏相关系数:又叫部分相关系数:部分相关系数反映校正其它变量后某一变量与另一变量的相关关系,校正的意思可以

4、理解为假定其它变量都取值为均数。偏相关系数的假设检验等同于偏回归系数的t检验。复相关系数的假设检验等同于回归方程的方差分析。典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性无关的综合指标.再用两组之间的综合指标的直线相关系敷来研究原两组变量间相关关系可决系数是相关系数的平方。意义:可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。相关系数(correlationcoefficient)相关系数是表示两个变量(X,Y)之间线性关系密切程度的指标,用r表示,其值

5、在-1至+1间。如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。计算相关系数的公式为:定义与说明相关系数,或称线性相关系数、皮氏积矩相关系数(Pearsonproduct-momentcorrelationcoefficient,PPCC)等,是衡量两个随机

6、变量之间线性相关程度的指标。它由卡尔·皮尔森(KarlPearson)在1880年代提出[1],现已广泛地应用于科学的各个领域。  相关系数计算公式相关系数(r)的定义如右图所示,取值范围为[-1,1],r>0表示正相关,r<0表示负相关,

7、r

8、表示了变量之间相关程度的高低。特殊地,r=1称为完全正相关,r=-1称为完全负相关,r=0称为不相关。通常

9、r

10、大于0.8时,认为两个变量有很强的线性相关性。[2]样本相关系数常用r表示,而总体相关系数常用ρ表示。在线性关系不显著时,还可以考虑采用秩相关系数(rankcorrelati

11、on),如斯皮尔曼秩相关系数(Spearman'srankcorrelationcoefficient)等。相关性质(1)对称性:X与Y的相关系数(rXY)和Y与X之间的相关系数(rYX)相等;  (2)相关系数与原点和尺度无关;(3)若X与Y统计上独立,则它们之间的相关系数为零;但r=0不等于说两个变量是独立的。即零相关并不一定意味着独立性;(4)相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;(5)相关系数只是两个变量之间线性关联的一个度量,不一定有因果关系的含义。Pearson相关系数相关系数简介Pea

12、rson相关系数[1]用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。如衡量国民收入和居民储蓄存款、身高和体重、高中成绩和高考成绩等变量间的线性相关关系。当两个变量都是正态连续变量,而且两者之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数,主要

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。