江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析

江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析

ID:45678000

大小:99.80 KB

页数:6页

时间:2019-11-16

江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析_第1页
江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析_第2页
江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析_第3页
江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析_第4页
江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析_第5页
资源描述:

《江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时跟踪检测(九)指数与指数函数一抓基础,多练小题做到眼疾手快1.(2019·连云港调研)已知a=3π,b=eπ,c=e3,则a,b,c的大小关系为________.解析:由y=ex是增函数,得b=eπ>c=e3,由y=xπ是增函数,得a=3π>b=eπ,故c<b<a.答案:c<b<a2.已知函数y=ax-1+3(a>0且a≠1)图象经过点P,则点P的坐标为________.解析:当x=1时,y=a0+3=4,∴函数y=ax-1+3(a>0且a≠1)的图象恒过定点(1,4).∴点P的坐标为(1,4).答案:(1,4)3.在同一平面直

2、角坐标系中,函数f(x)=2x+1与g(x)=x-1的图象关于________对称.解析:因为g(x)=21-x=f(-x),所以f(x)与g(x)的图象关于y轴对称.答案:y轴4.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为________.解析:由f(x)过定点(2,1)可知b=2,因为f(x)=3x-2在[2,4]上是增函数,所以f(x)min=f(2)=1,f(x)max=f(4)=9.故f(x)的值域为[1,9].答案:[1,9]5.不等式2>x+4的解集为________.解析:

3、不等式2>x+4可化为x2-2x>x+4,等价于x2-2x<x+4,即x2-3x-4<0,解得-1<x<4.答案:{x

4、-1<x<4}6.(2019·徐州调研)若函数f(x)=ax-1(a>1)在区间[2,3]上的最大值比最小值大,则a=________.解析:∵函数f(x)=ax-1(a>1)在区间[2,3]上为增函数,∴f(x)max=f(3)=a2,f(x)min=f(2)=a.由题意可得a2-a=,解得a=.答案:二保高考,全练题型做到高考达标1.若函数f(x)=a

5、x+1

6、(a>0,且a≠1)的值域为[1,+∞),则f(-

7、4)与f(1)的大小关系是________.解析:由题意知a>1,f(-4)=a3,f(1)=a2,由y=at(a>1)的单调性知a3>a2,所以f(-4)>f(1).答案:f(-4)>f(1)2.(2018·启东中学检测)满足x-3>16的x的取值范围是________.解析:∵x-3>16,∴x-3>-2,∵函数y=x在定义域上是减函数,∴x-3<-2,故x<1.答案:(-∞,1)3.已知实数a,b满足等式2017a=2018b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系

8、式有________个.解析:设2017a=2018b=t,如图所示,由函数图象,可得若t>1,则有a>b>0;若t=1,则有a=b=0;若0<t<1,则有a<b<0.故①②⑤可能成立,而③④不可能成立.答案:24.若函数f(x)=是R上的减函数,则实数a的取值范围是________.解析:依题意,a应满足解得<a≤.答案:5.(2019·苏州中学检测)函数f(x)=x2+1的值域为________.解析:令u=x2+1,可得f(u)=u是减函数,而u=x2+1的值域为[1,+∞),∴函数f(x)=x2+1的值域为.答案:6.(201

9、9·无锡调研)函数f(x)=的单调递增区间是________.解析:设u(x)=x2-2x+6=(x-1)2+5,对称轴为x=1,则u(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,又y=x在R上单调递减,所以f(x)=在(-∞,1)上单调递增,在(1,+∞)上单调递减.答案:(-∞,1)7.已知函数f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是________.解析:因为f(x)=a-x=x,且f(-2)>f(-3),所以函数f(x)在定义域上单调递增,所以>1,解得0<a<1.答案:(0

10、,1)8.当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是________.解析:原不等式变形为m2-m<x,因为函数y=x在(-∞,-1]上是减函数,所以x≥-1=2,当x∈(-∞,-1]时,m2-m<x恒成立等价于m2-m<2,解得-1<m<2.答案:(-1,2)9.化简下列各式:(1)0.5+0.1-2+-3π0+;(2)÷.解:(1)原式=++-3+=+100+-3+=100.(2)原式=÷=÷=a÷a=a=a.10.(2018·苏州调研)已知函数f(x)=3x+λ·3-x(λ∈R).(1

11、)若f(x)为奇函数,求λ的值和此时不等式f(x)>1的解集;(2)若不等式f(x)≤6对x∈[0,2]恒成立,求实数λ的取值范围.解:(1)函数f(x)=3x+λ·3-x的定义域为R.因为f(x)为奇函数,所以f(-x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。