资源描述:
《数学开放性探究性试题及解题策略》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2012-2013第2学期数学开放性探究性试题及解题策略肥西烧脉中学数学教研组随着基础教育课程改革和素质教育的全面推进,近几年在初屮数学教学中和各省、市的中考题中,出现了-•批符合学牛年龄特点和认知水平、设计优美、个性独特的开放题。开放题打破传统模式,构思新颖,使人耳目一新。数学开放题被认为是当前培养创新意识、创造能力的最富有价值的数学问题,加人数学开放题在屮考命题屮的力度,是丿应试教冇向素质教冇转轨的重要体现,对发挥学生主体性方面确实具有得天独厚的优势,是培养学生主体意识的极好材料。一、数学开放题的概述
2、1、关于数学开放题的儿种论述:什么是数学开放题,现在述没有统一的认识,主要有如下的论述:(1)答案不固定或者条件不完备的习题,我们称为开放题;(2)开放题是条件多余需选择、条件不足需补充或答案不固定的题;(3)有多处正确答案的问题是开放题。这类问题给了学生以自己喜欢的方式解答问题的机会,在解题过程屮,学牛可以把口己的知识、技能以各种方式结合,学生可以把自己的知识、技能以各种方式结合,去发现新的思想方法;(4)答案不唯一的问题是开放性的问题;(5)具冇多种不同的解法,或冇多种可能的解答的问题,称之为开放题;
3、(6)问题不必有解,答案不必唯-,条件可以多余,称之为开放题。数学开放题,通俗地说就是给学生以较人认知空间的题目。—个问题是开放还是封闭常常取决于提出问题时学生的知识水平如何。例如:对n个人两两握手共握多少次的问题,在学生学习《组合》知识以前解法很多,是一个开放题,在学习组合知识Z后则是一个封闭题。2、数学开放题的基本类型:大概包括以卜•儿种:(1)条件开放型这类问题一般是由给定的结论,反思,探索应具备的条件,而满足结论的条件并不唯一例1、如图1,要得到AD//BC,只需满足条件(只填一个)。再如:如图2
4、,AB=DB,Z1=Z2,请你添加一个适当的条件,使AABC^ADBE,则需添加的条件是。(2)结论开放型这类题H就是在给定的条件下,探索响应的对象是否存在。它冇结论存在和结论不存在两种情况。英基本解题方法是:假设存在,演绎推理,得出结论,从而对是否存在做出准确的判断。例2、如图,OO的直径AB为6,P为AB±一点,过点P作OO的弦CD,连结AC、BC,设ZBCD=mZACD,是否存在正实数m,使弦CD最短?如果存在,请求出m的值;如果不存厂二^在请说明理由。简析:假设存在正实数m,使弦CD最短,则有CD
5、丄AB于P,从而cosZPOD=OP:OD,A"B因为,AB=6,所以cosZPOD=30°。于是ZACD=15°,ZBCD=75°,故m=5。(3)简略开放型D例沢计第PF存护春学生可能出现以下几种方法。方法1:直接通分,相加后再约分。方法2:®^=(-+-+—+—+—)x60x—=-o26122030606方法,原式=(T+G弓+GT+GV)+(护—方法1是常规方法;方法2体现的是一种化归思想,但也不简单;方法3转化为一些互为相反数的和来计算,显然新颖、简便。此外,设计开放型、举例开放型、实践开放
6、型、信息开放型邙艮于篇幅不举例子)。还有综合开放型、情境开放型……等。这些开放题的条件、问题变化不定,有的条件隐蔽多余,有的结论多样,有的解法丰富等。二、开放题具有不同于封闭题的显著特点(1)数学开放题内容具有新颖性,条件复杂、结论不定、解法灵活、无现成模式可套用。题材广泛,则近学生实际生活,不像封闭性题型那样简单,靠记忆、套模式來解题。(2)数学开放题形式具有多样性、牛动性,有的追溯多种条件,有的迫溯多种条件,有的探求多种结论,有的寻找多种解法,有的山变求变,体现现代数学气息,不像封闭性题型形式单一的呈
7、现和呆板的叙述。(3)数学开放题解决具有发散性,由于开放题的答案不唯一,解题时需婆运用多种思维方法,通过多角度的观察、想像、分析、综合、类比、归纳、概括等思维方法,同时探求多个解决方向。(4)数学开放题教育功能具有创新性,正是因为它的这种先进而高效的教育功能,适应了当前各国人才竞争的要求。三、开放探索性试题备考策略:(一)数与式的开放题此类题常以找规律的阅读题形式出现,解题要求能善于观察分析,归纳所提供的材料,猜想其结论。例题:观察下列等式:9-1=816-4=1225-9=1636-16=20这些等式反
8、映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来:策略小结:此类“猜想性”开放题要求能够从所给条件出发,通过观察、试验、分析、归纳、比较、概括、猜想、探索出一般规律,解题的关键在于正确的归纳和猜想。(二)方程开放题此类问题主要以方程知识为背景,探索方程有解的条件或某种条件解的悄况,求字母参数的值。例题:是否存在k,使关于x的方程9x2-(4k-7)x-6k2=0的两个实数根Xi、x2,满足
9、xl-x2
10、=10如果