2019-2020年高中数学教案精选数学归纳法2

2019-2020年高中数学教案精选数学归纳法2

ID:45509178

大小:363.80 KB

页数:35页

时间:2019-11-14

2019-2020年高中数学教案精选数学归纳法2_第1页
2019-2020年高中数学教案精选数学归纳法2_第2页
2019-2020年高中数学教案精选数学归纳法2_第3页
2019-2020年高中数学教案精选数学归纳法2_第4页
2019-2020年高中数学教案精选数学归纳法2_第5页
资源描述:

《2019-2020年高中数学教案精选数学归纳法2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学教案精选数学归纳法2教学目标:理解“归纳法”和“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明简单的恒等式。初步掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质。培养学生对于数学内在美的感悟能力。教学重点:使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用)。教学难点:如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设。教学过程:一、引入:问题1:这个盒子里有十个乒乓球,如何证明里面的

2、球全为橙色?问题2:请大家回忆,课本是如何得出等差数列的通项公式的?二、归纳法:教师引导学生明了以上两个问题的异同点。由此,得出归纳法的概念:由一系列有限的特殊事例得出一般结论的推理方法。同时指明了完全归纳法与不完全归纳法的区别。[投影]通过数学家费马运用不完全归纳得出错误结论的事例来说明不完全归纳法的缺憾之处仅根据一系列有限的特殊事例得出一般结论是要冒很大风险的,因为有可能产生不正确的结论。[提问]如何解决不完全归纳法存在的问题呢?引导学生得出:只有经过严格的证明,不完全归纳得出的结论才是正确的。三、数学归纳法:[提问]

3、若盒子里的乒乓球有无数个,如何证明它们全是橙色球呢?在学生讨论未果的基础上,教师给出方法供学生参考:①证明第一次拿出的乒乓球是橙色的;②构造一个命题并证明,此命题的题设是:“若某一次拿出的球是橙色的”,结论是:“下次拿出的球也是橙色的”。以上两步都被证明,则盒子中的乒乓球全是橙色的。(该命题并不是孤立地研究“某一次”、“下一次”取的是橙球,而且由“某次取出的是橙球”来得到“下一次取出的也是橙球”的逻辑必然性,即一种递推关系)教师引导学生讨论:以上两个步骤如果都得到证明,是否能说明全部的乒乓球都是橙色的?由此,得出数学归纳法

4、的基本概念:它是自然数相关问题的一种证明方法。[提问]在现实生活中有没有相似的“递推”思想的实例呢?[提问]这种思考方法能不能用来证明第二个问题呢?[投影]给出问题2的数学归纳法的证明,将每一步骤标号,引导学生对比上一问题与此问题类似之处,进而得出数学归纳法的证题思路和步骤。教师再通过投影明确数学归纳法的“奠基步骤”和“递推步骤”这“两个步骤”以及“一个结论”。四、例题讲解:例1、数列{an},其通项公式为an=2n-1,请猜测该数列的前n项和公式Sn,并用数学归纳法证明该结论。教师板演学生的解题步骤。师生共同归结:1、数

5、学归纳法是一种完全归纳的证明方法,它适用于与自然数有关的问题。2、两个步骤、一个结论缺一不可,否则结论不能成立;3、在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。第3点可结合学生完成情况来阐明。五、反馈练习:用数学归纳法证明:A组:1、1+2+3+…+n=n(n+1)/2(n∈N);2、首项为a1,公比为q的等比数列的通项公式为:an=a1qn-1(n∈N)B组:1、1+2+22+…+2n-1=2n-1(n∈N);2、S=1/(1•3)+1/(3•5)+1/(5•7)+…+1/[(2n-1)•(2n+1)](n∈N

6、)一、知识小结:投影:不完全归纳法完全归纳法递推基础不可少,归纳假设要用到,结论写明莫忘掉数学归纳法穷举法二、作业:P1211、①②预习课本P115-117教学章节:数学归纳法应用教学目标:使学生能掌握用“归纳法”去猜想有关命题的条件、结论。教学重点:如何用“归纳法”去推导、猜想。教学难点:。教学过程:(一)创设问题情境问题1:“管中窥豹,略见一斑”的含义是什么?    (比喻可以从观察到事物的一部分情况推测到事物的全体情况)例:看一下广交会上的出口商品,就可以了解到我国目前的经济发展情况。问题2:用了解同学们的作业情况,

7、可以用什么方法?(二)师生共同探索上述推理所采用的方法实际上就是归纳法,它是由一系列有限的特殊事例去推导出一般的结论。归纳法可以帮助我们从特殊事例中去发现一般规律。例1、已知数列:计算得: S1=,……,由此可猜测Sn=_____________例2:观察下列式子:1+<,1++<,1+++,……则可归纳出________________    教师引导学生观察上述两例的变化规律,可得:例1的Sn=,例2的    1+++……+(三)学生讨论归纳下列各题由学生进行分组讨论,然后教师进行提问1、对一切自然数n,猜出使成立的最

8、小自然数t。2、平面上有几条直线,其中无两条平行,无三条共点,问:①这n条直线共有几个交点f(n)?(②这n条直线互相分割成多少条线段(或射线)?(条)①平面被这n条直线分割成多少块区域?()2、已知数列{an}中,a1=,an+1=。求a2,a3,a4,猜测通项公式an3、设数列{an}的各项均为正整

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。